File size: 1,776 Bytes
e37ebcd
 
3d9844c
 
 
 
 
 
 
 
 
e37ebcd
 
3d9844c
 
e37ebcd
3d9844c
e37ebcd
3d9844c
 
 
 
e37ebcd
3d9844c
e37ebcd
3d9844c
e37ebcd
3d9844c
e37ebcd
3d9844c
e37ebcd
3d9844c
e37ebcd
3d9844c
e37ebcd
3d9844c
e37ebcd
3d9844c
e37ebcd
3d9844c
 
 
 
 
 
 
 
 
e37ebcd
3d9844c
e37ebcd
3d9844c
 
 
 
 
 
 
e37ebcd
 
3d9844c
e37ebcd
3d9844c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
library_name: transformers
license: apache-2.0
base_model: superb/wav2vec2-base-superb-sid
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: transcribe-monkey
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# transcribe-monkey

This model is a fine-tuned version of [superb/wav2vec2-base-superb-sid](https://huggingface.co/superb/wav2vec2-base-superb-sid) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2787
- Accuracy: 0.9677

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1226        | 1.0   | 212  | 0.4222          | 0.9516   |
| 0.2144        | 2.0   | 424  | 0.2416          | 0.9516   |
| 0.0888        | 3.0   | 636  | 0.2240          | 0.9677   |
| 0.0004        | 4.0   | 848  | 0.3074          | 0.9677   |
| 0.0204        | 5.0   | 1060 | 0.2787          | 0.9677   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.3.0
- Datasets 3.1.0
- Tokenizers 0.20.3