--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: results_bert_full results: [] --- # results_bert_full This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9742 - Accuracy: 0.878 - F1: 0.8729 - Recall: 0.878 - Precision: 0.8709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.3524 | 1.0 | 500 | 0.6161 | 0.867 | 0.8508 | 0.867 | 0.8553 | | 0.2878 | 2.0 | 1000 | 0.5404 | 0.882 | 0.8706 | 0.882 | 0.8739 | | 0.1682 | 3.0 | 1500 | 0.7048 | 0.879 | 0.8684 | 0.879 | 0.8699 | | 0.1006 | 4.0 | 2000 | 0.7590 | 0.877 | 0.8610 | 0.877 | 0.8698 | | 0.0421 | 5.0 | 2500 | 0.7716 | 0.878 | 0.8742 | 0.878 | 0.8722 | | 0.0205 | 6.0 | 3000 | 0.8432 | 0.887 | 0.8804 | 0.887 | 0.8798 | | 0.0294 | 7.0 | 3500 | 0.8998 | 0.884 | 0.8661 | 0.884 | 0.8837 | | 0.0099 | 8.0 | 4000 | 0.9366 | 0.882 | 0.8746 | 0.882 | 0.8739 | | 0.0046 | 9.0 | 4500 | 0.9346 | 0.882 | 0.8789 | 0.882 | 0.8771 | | 0.0028 | 10.0 | 5000 | 0.9742 | 0.878 | 0.8729 | 0.878 | 0.8709 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0