--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes results: [] --- # twitter-data-distilbert-base-uncased-sentiment-finetuned-memes This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2474 - Accuracy: 0.9282 - Precision: 0.9290 - Recall: 0.9282 - F1: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3623 | 1.0 | 1762 | 0.3171 | 0.8986 | 0.8995 | 0.8986 | 0.8981 | | 0.271 | 2.0 | 3524 | 0.2665 | 0.9176 | 0.9182 | 0.9176 | 0.9173 | | 0.2386 | 3.0 | 5286 | 0.2499 | 0.9237 | 0.9254 | 0.9237 | 0.9239 | | 0.2136 | 4.0 | 7048 | 0.2494 | 0.9259 | 0.9263 | 0.9259 | 0.9257 | | 0.1974 | 5.0 | 8810 | 0.2454 | 0.9278 | 0.9288 | 0.9278 | 0.9278 | | 0.182 | 6.0 | 10572 | 0.2474 | 0.9282 | 0.9290 | 0.9282 | 0.9282 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1