--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes results: [] --- # twitter-data-distilbert-base-uncased-sentiment-finetuned-memes This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2605 - Accuracy: 0.9316 - Precision: 0.9322 - Recall: 0.9316 - F1: 0.9317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3463 | 1.0 | 1783 | 0.2966 | 0.9065 | 0.9079 | 0.9065 | 0.9066 | | 0.2601 | 2.0 | 3566 | 0.2526 | 0.9245 | 0.9254 | 0.9245 | 0.9244 | | 0.2228 | 3.0 | 5349 | 0.2355 | 0.9313 | 0.9327 | 0.9313 | 0.9314 | | 0.1997 | 4.0 | 7132 | 0.2243 | 0.9341 | 0.9354 | 0.9341 | 0.9342 | | 0.1779 | 5.0 | 8915 | 0.2254 | 0.9346 | 0.9354 | 0.9346 | 0.9345 | | 0.1642 | 6.0 | 10698 | 0.2355 | 0.9322 | 0.9329 | 0.9322 | 0.9323 | | 0.146 | 7.0 | 12481 | 0.2485 | 0.9302 | 0.9306 | 0.9302 | 0.9303 | | 0.1368 | 8.0 | 14264 | 0.2530 | 0.9296 | 0.9312 | 0.9296 | 0.9299 | | 0.1293 | 9.0 | 16047 | 0.2585 | 0.9317 | 0.9322 | 0.9317 | 0.9317 | | 0.121 | 10.0 | 17830 | 0.2605 | 0.9316 | 0.9322 | 0.9316 | 0.9317 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1