--- library_name: transformers language: - ug license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - THUGY20 metrics: - cer - wer model-index: - name: Whisper Small Fine-tuned with THUYG20 Uyghur Dataset results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 'THUGY20: A free Uyghur speech database' type: THUGY20 metrics: - name: Cer type: cer value: 4.927369689396644 - name: Wer type: wer value: 17.940071709066075 --- # Whisper Small Fine-tuned with THUYG20 Uyghur Dataset This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the THUGY20: A free Uyghur speech database dataset. It achieves the following results on the test set of THUGY20: - Loss: 0.7473 - Wer Ortho: 18.0908 - Wer: 17.9401 - Cer: 4.9274 ## Training procedure Finetuning code avaiblable in https://github.com/ixxan/ug-speech ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|:-------:| | 0.3815 | 0.8058 | 500 | 0.7944 | 34.8819 | 34.7960 | 10.4265 | | 0.1343 | 1.6116 | 1000 | 0.7441 | 28.3393 | 28.3550 | 8.3051 | | 0.0646 | 2.4174 | 1500 | 0.7396 | 27.7378 | 27.5653 | 8.5366 | | 0.0311 | 3.2232 | 2000 | 0.6984 | 25.1910 | 24.9445 | 7.5643 | | 0.0176 | 4.0290 | 2500 | 0.6934 | 21.3709 | 21.2523 | 5.8316 | | 0.0075 | 4.8348 | 3000 | 0.7654 | 20.5541 | 20.3603 | 5.7519 | | 0.0023 | 5.6406 | 3500 | 0.7686 | 18.7582 | 18.5846 | 5.1923 | | 0.0004 | 6.4464 | 4000 | 0.7473 | 18.0908 | 17.9401 | 4.9274 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3