--- license: cc-by-4.0 language: - qu metrics: - cer - wer pipeline_tag: automatic-speech-recognition --- ## Usage The model can be used directly (without a language model) as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import torchaudio # load model and processor processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xls-r-300m-quechua") model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xls-r-300m-quechua") # load dummy dataset and read soundfiles file = torchaudio.load("quechua000573.wav") # retrieve logits logits = model(file[0]).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) print("HF prediction: ", transcription) ```