--- license: cc-by-4.0 language: - qu metrics: - cer - wer pipeline_tag: automatic-speech-recognition --- ## Usage The model can be used directly (without a language model) as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import torchaudio # load model and processor processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-quechua") model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-quechua") # load dummy dataset and read soundfiles file = torchaudio.load("quechua000573.wav") # retrieve logits logits = model(file[0]).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) print("HF prediction: ", transcription) ``` This code snipnet shows how to Evaluate the wav2vec2-xlsr-300m-quechua in [Second Americas NLP 2022 Quechua dev set](https://huggingface.co/datasets/ivangtorre/second_americas_nlp_2022) ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import cer import torch.nn.functional as F #librispeech_eval = load_dataset("ivangtorre/second_americas_nlp_2022", split="validation") librispeech_eval = load_dataset("ivangtorre/second_americas_nlp_2022", split="validation") model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-quechua") processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-quechua") def map_to_pred(batch): wav = batch["audio"][0]["array"] feats = torch.from_numpy(wav).float() feats = F.layer_norm(feats, feats.shape) # Normalization performed during finetuning feats = torch.unsqueeze(feats, 0) logits = model(feats).logits predicted_ids = torch.argmax(logits, dim=-1) batch["transcription"] = processor.batch_decode(predicted_ids) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1) print("CER:", cer(result["source_processed"], result["transcription"])) ``` ## Citation ```bibtex @misc{grosman2021xlsr-1b-russian, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {R}ussian}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-russian}}, year={2022} } ```