--- license: cc-by-4.0 language: - bzd metrics: - cer pipeline_tag: automatic-speech-recognition datasets: - ivangtorre/second_americas_nlp_2022 tags: - audio - automatic-speech-recognition - speech - bribri - xlsr-fine-tuning model-index: - name: Wav2Vec2 XLSR 300M Bribri Model by M Romero and Ivan G Torre results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Americas NLP 2022 Bribri type: second_americas_nlp_2022 args: Bribri metrics: - name: Test CER type: cer value: 99 --- This model was finetuned from a Wav2vec2.0 XLS-R model: 300M with the Bribri train parition of the Americas NLP 2022 dataset. This challenge took place during NeurIPSS 2022. ## Example of usage The model can be used directly (without a language model) as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import torchaudio # load model and processor processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-bribri") model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-bribri") # Pat to wav file pathfile = "/path/to/wavfile" # Load and normalize the file wav, curr_sample_rate = sf.read(pathfile, dtype="float32") feats = torch.from_numpy(wav).float() with torch.no_grad(): feats = F.layer_norm(feats, feats.shape) feats = torch.unsqueeze(feats, 0) logits = model(feats).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) print("HF prediction: ", transcription) ``` This code snipnet shows how to Evaluate the wav2vec2-xlsr-300m-bribri in [Second Americas NLP 2022 Bribri dev set](https://huggingface.co/datasets/ivangtorre/second_americas_nlp_2022) ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import cer import torch.nn.functional as F from datasets import load_dataset import soundfile as sf americasnlp = load_dataset("ivangtorre/second_americas_nlp_2022", "bribri", split="dev") quechua = americasnlp.filter(lambda language: language['subset']=='bribri') model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-bribri") processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-bribri") def map_to_pred(batch): wav = batch["audio"][0]["array"] feats = torch.from_numpy(wav).float() feats = F.layer_norm(feats, feats.shape) # Normalization performed during finetuning feats = torch.unsqueeze(feats, 0) logits = model(feats).logits predicted_ids = torch.argmax(logits, dim=-1) batch["transcription"] = processor.batch_decode(predicted_ids) return batch result = quechua.map(map_to_pred, batched=True, batch_size=1) print("CER:", cer(result["source_processed"], result["transcription"])) ``` ## Citation ```bibtex @misc{grosman2021xlsr-1b-russian, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {R}ussian}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-russian}}, year={2022} } ```