--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: realFake-img results: [] --- # realFake-img This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0988 - Accuracy: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2578 | 0.2525 | 100 | 0.1594 | 0.9418 | | 0.0944 | 0.5051 | 200 | 0.2243 | 0.9373 | | 0.1747 | 0.7576 | 300 | 0.2472 | 0.9293 | | 0.1328 | 1.0101 | 400 | 0.1774 | 0.9338 | | 0.1918 | 1.2626 | 500 | 0.1282 | 0.9570 | | 0.169 | 1.5152 | 600 | 0.2247 | 0.9346 | | 0.2595 | 1.7677 | 700 | 0.1785 | 0.9445 | | 0.0911 | 2.0202 | 800 | 0.1353 | 0.9534 | | 0.0548 | 2.2727 | 900 | 0.1998 | 0.9472 | | 0.1399 | 2.5253 | 1000 | 0.1971 | 0.9445 | | 0.2001 | 2.7778 | 1100 | 0.2479 | 0.9373 | | 0.0976 | 3.0303 | 1200 | 0.1601 | 0.9499 | | 0.1291 | 3.2828 | 1300 | 0.1607 | 0.9588 | | 0.0721 | 3.5354 | 1400 | 0.1822 | 0.9588 | | 0.0592 | 3.7879 | 1500 | 0.1255 | 0.9624 | | 0.0964 | 4.0404 | 1600 | 0.1620 | 0.9543 | | 0.0738 | 4.2929 | 1700 | 0.1279 | 0.9651 | | 0.0504 | 4.5455 | 1800 | 0.1624 | 0.9588 | | 0.0972 | 4.7980 | 1900 | 0.1579 | 0.9624 | | 0.0456 | 5.0505 | 2000 | 0.1965 | 0.9490 | | 0.0334 | 5.3030 | 2100 | 0.1652 | 0.9570 | | 0.0242 | 5.5556 | 2200 | 0.1182 | 0.9749 | | 0.0715 | 5.8081 | 2300 | 0.1250 | 0.9651 | | 0.0407 | 6.0606 | 2400 | 0.1172 | 0.9696 | | 0.0003 | 6.3131 | 2500 | 0.0819 | 0.9785 | | 0.0072 | 6.5657 | 2600 | 0.1406 | 0.9714 | | 0.0183 | 6.8182 | 2700 | 0.1152 | 0.9749 | | 0.0021 | 7.0707 | 2800 | 0.1368 | 0.9731 | | 0.046 | 7.3232 | 2900 | 0.0900 | 0.9794 | | 0.033 | 7.5758 | 3000 | 0.1014 | 0.9785 | | 0.0354 | 7.8283 | 3100 | 0.0968 | 0.9767 | | 0.0026 | 8.0808 | 3200 | 0.1217 | 0.9731 | | 0.0002 | 8.3333 | 3300 | 0.0828 | 0.9794 | | 0.0006 | 8.5859 | 3400 | 0.0926 | 0.9794 | | 0.0006 | 8.8384 | 3500 | 0.1001 | 0.9794 | | 0.0006 | 9.0909 | 3600 | 0.0863 | 0.9848 | | 0.0633 | 9.3434 | 3700 | 0.0911 | 0.9803 | | 0.0009 | 9.5960 | 3800 | 0.0941 | 0.9821 | | 0.0247 | 9.8485 | 3900 | 0.0988 | 0.9785 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1