--- license: cc-by-4.0 datasets: - issai/kazsandra language: - kk metrics: - f1 pipeline_tag: text-classification tags: - polarity - polarity classification - sentiment analysis widget: - text: "Түк ұнаған жоқ." example_title: "Negative" # - text: Өте жақсы. # example_title: "Positive" # - text: Бұл тауар маған жақпады. # example_title: "Negative" --- # Polarity Classification Model for Kazakh
This is a RemBERT model fine-tuned for sentiment analysis on product reviews in Kazakh. It predicts the polarity of a review as positive or negative. The model was fine-tuned on KazSAnDRA.
| Model | Accuracy | Precision | Recall | F1 | | :---: | :---: | :---: | :---: | :---: | RemBERT | 0.89 | 0.81 | 0.82 | 0.81 ## How to useYou can use this model with the Transformers pipeline for text classification.
```python from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from transformers import TextClassificationPipeline model = AutoModelForSequenceClassification.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh") tokenizer = AutoTokenizer.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh") pipe = TextClassificationPipeline(model = model, tokenizer = tokenizer) reviews = ["Бұл бейнефильм маған түк ұнамады.", "Осы кітап қызық сияқты."] for review in reviews: print(pipe(review)) ```