--- license: cc-by-nc-4.0 pipeline_tag: image-segmentation tags: - remote sensing - sentinel2 - landsat - floods --- # ml4floods trained models This repository contains the trained models of the publication: > E. Portalés-Julià, G. Mateo-García, C. Purcell, and L. Gómez-Chova [Global flood extent segmentation in optical satellite images](https://www.nature.com/articles/s41598-023-47595-7). _Scientific Reports 13, 20316_ (2023). DOI: 10.1038/s41598-023-47595-7. We include the trained models: * **Unet multioutput** in folder `models/WF2_unetv2_all` * **Unet multioutput S2-to-L8** in folder `models/WF2_unetv2_bgriswirs` * **Unet multioutput RGBNIR** in folder `models/WF2_unetv2_rgbi` The following table shows the performance of the models in the test dataset: ![metrics_ml4floods](metrics_ml4floods.png) In order to run any of these models in a Landsat or Sentinel-2 scene see the tutorial [*Inference with clouds aware floods segmentation model*](https://spaceml-org.github.io/ml4floods/content/ml4ops/HOWTO_Run_Inference_multioutput_binary.html) in the ml4floods docs. If you find this work useful please cite: ``` @article{portales-julia_global_2023, title = {Global flood extent segmentation in optical satellite images}, volume = {13}, issn = {2045-2322}, doi = {10.1038/s41598-023-47595-7}, number = {1}, urldate = {2023-11-30}, journal = {Scientific Reports}, author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis}, month = nov, year = {2023}, pages = {20316}, } ```