--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: Q3-PHQ results: [] --- # Q3-PHQ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6063 - Accuracy: 0.69 - Mcc: 0.2901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Mcc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 51 | 0.6793 | 0.635 | 0.0 | | No log | 2.0 | 102 | 0.6683 | 0.5925 | 0.2198 | | No log | 3.0 | 153 | 0.6685 | 0.6525 | 0.1651 | | No log | 4.0 | 204 | 0.6108 | 0.675 | 0.2395 | | No log | 5.0 | 255 | 0.6063 | 0.69 | 0.2901 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1