--- library_name: transformers license: apache-2.0 base_model: ai-forever/ruBert-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: mmodel_v2 results: [] --- # mmodel_v2 This model is a fine-tuned version of [ai-forever/ruBert-base](https://huggingface.co/ai-forever/ruBert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0613 - Accuracy: 0.7115 - F1: 0.7076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.631 | 1.0 | 693 | 1.2443 | 0.6671 | 0.6599 | | 1.1397 | 2.0 | 1386 | 1.0194 | 0.7142 | 0.7069 | | 0.8178 | 3.0 | 2079 | 0.9897 | 0.7126 | 0.7057 | | 0.667 | 4.0 | 2772 | 1.0223 | 0.7099 | 0.7049 | | 0.5712 | 5.0 | 3465 | 1.0613 | 0.7115 | 0.7076 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3