Upload RetNetForCausalLM
Browse files- config.json +43 -0
- configuration_retnet.py +122 -0
- generation_config.json +7 -0
- modeling_retnet.py +1317 -0
- pytorch_model.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sdprompt-retnet-400m",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_fn": "swish",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"RetNetForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_retnet.RetNetConfig",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_retnet.RetNetForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"decoder_embed_dim": 1280,
|
| 14 |
+
"decoder_ffn_embed_dim": 2560,
|
| 15 |
+
"decoder_layers": 12,
|
| 16 |
+
"decoder_normalize_before": true,
|
| 17 |
+
"decoder_retention_heads": 8,
|
| 18 |
+
"decoder_value_embed_dim": 2560,
|
| 19 |
+
"deepnorm": false,
|
| 20 |
+
"drop_path_rate": 0.0,
|
| 21 |
+
"dropout": 0.0,
|
| 22 |
+
"eos_token_id": 2,
|
| 23 |
+
"forward_impl": "parallel",
|
| 24 |
+
"initializer_range": 0.02,
|
| 25 |
+
"is_decoder": true,
|
| 26 |
+
"layernorm_embedding": true,
|
| 27 |
+
"layernorm_eps": 1e-06,
|
| 28 |
+
"model_type": "retnet",
|
| 29 |
+
"no_scale_embedding": false,
|
| 30 |
+
"output_retentions": false,
|
| 31 |
+
"pad_token_id": 33619,
|
| 32 |
+
"recurrent_chunk_size": 512,
|
| 33 |
+
"subln": true,
|
| 34 |
+
"tie_word_embeddings": false,
|
| 35 |
+
"torch_dtype": "float32",
|
| 36 |
+
"transformers_version": "4.34.1",
|
| 37 |
+
"use_cache": true,
|
| 38 |
+
"use_ffn_rms_norm": false,
|
| 39 |
+
"use_glu": true,
|
| 40 |
+
"use_lm_decay": false,
|
| 41 |
+
"vocab_size": 33620,
|
| 42 |
+
"z_loss_coeff": 0.0
|
| 43 |
+
}
|
configuration_retnet.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# by syncdoth: https://github.com/syncdoth/RetNet/blob/main/retnet/configuration_retnet.py
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def load_config_from_json(config_file):
|
| 10 |
+
with open(config_file, "r") as f:
|
| 11 |
+
config = json.load(f)
|
| 12 |
+
config = RetNetConfig.from_dict(config)
|
| 13 |
+
return config
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class RetNetConfig(PretrainedConfig):
|
| 18 |
+
model_type = "retnet"
|
| 19 |
+
initializer_range: float = 0.02
|
| 20 |
+
activation_fn: str = "gelu"
|
| 21 |
+
dropout: float = 0.0 # dropout probability
|
| 22 |
+
activation_dropout: float = 0.0 # dropout probability after activation in FFN.
|
| 23 |
+
drop_path_rate: float = 0.0
|
| 24 |
+
decoder_embed_dim: int = 768 # decoder embedding dimension
|
| 25 |
+
decoder_value_embed_dim: int = 1280 # decoder value embedding dimension
|
| 26 |
+
decoder_ffn_embed_dim: int = 1280 # decoder embedding dimension for FFN
|
| 27 |
+
decoder_layers: int = 12 # num decoder layers
|
| 28 |
+
decoder_retention_heads: int = 3 # num decoder retention heads
|
| 29 |
+
decoder_normalize_before: bool = True # apply layernorm before each decoder block
|
| 30 |
+
layernorm_embedding: bool = False # add layernorm to embedding
|
| 31 |
+
no_scale_embedding: bool = True # if True, dont scale embeddings
|
| 32 |
+
recurrent_chunk_size: int = 512
|
| 33 |
+
use_lm_decay: bool = False
|
| 34 |
+
use_glu: bool = True # use GLU instead of FFN
|
| 35 |
+
z_loss_coeff: float = 0.0 # coefficient for z loss: TODO: 1e-4
|
| 36 |
+
deepnorm: bool = False
|
| 37 |
+
subln: bool = True
|
| 38 |
+
use_ffn_rms_norm: bool = False
|
| 39 |
+
layernorm_eps: float = 1e-6
|
| 40 |
+
tie_word_embeddings: bool = False
|
| 41 |
+
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
vocab_size: int = 50257,
|
| 45 |
+
initializer_range: float = 0.02,
|
| 46 |
+
is_decoder: bool = True,
|
| 47 |
+
pad_token_id: int = 0,
|
| 48 |
+
eos_token_id: int = 0,
|
| 49 |
+
output_retentions: bool = False,
|
| 50 |
+
use_cache: bool = True,
|
| 51 |
+
forward_impl: str = "parallel",
|
| 52 |
+
activation_fn: str = "gelu",
|
| 53 |
+
dropout: float = 0.0, # dropout probability
|
| 54 |
+
activation_dropout: float = 0.0, # dropout probability after activation in FFN.
|
| 55 |
+
drop_path_rate: float = 0.0,
|
| 56 |
+
decoder_embed_dim: int = 768, # decoder embedding dimension
|
| 57 |
+
decoder_value_embed_dim: int = 1280, # decoder value embedding dimension
|
| 58 |
+
decoder_ffn_embed_dim: int = 1280, # decoder embedding dimension for FFN
|
| 59 |
+
decoder_layers: int = 12, # num decoder layers
|
| 60 |
+
decoder_retention_heads: int = 3, # num decoder retention heads
|
| 61 |
+
decoder_normalize_before: bool = True, # apply layernorm before each decoder block
|
| 62 |
+
layernorm_embedding: bool = False, # add layernorm to embedding
|
| 63 |
+
no_scale_embedding: bool = True, # if True, dont scale embeddings
|
| 64 |
+
recurrent_chunk_size: int = 512,
|
| 65 |
+
use_glu: bool = True, # use GLU instead of FFN
|
| 66 |
+
z_loss_coeff: float = 0.0, # coefficient for z loss: TODO: 1e-4
|
| 67 |
+
use_lm_decay: bool = False,
|
| 68 |
+
deepnorm: bool = False,
|
| 69 |
+
subln: bool = True,
|
| 70 |
+
use_ffn_rms_norm: bool = False, # use RMSNorm instead of LayerNorm in FFN
|
| 71 |
+
layernorm_eps: float = 1e-6,
|
| 72 |
+
tie_word_embeddings: bool = False,
|
| 73 |
+
**kwargs
|
| 74 |
+
):
|
| 75 |
+
self.vocab_size = vocab_size
|
| 76 |
+
self.initializer_range = initializer_range
|
| 77 |
+
self.output_retentions = output_retentions
|
| 78 |
+
self.use_lm_decay = use_lm_decay
|
| 79 |
+
self.use_glu = use_glu
|
| 80 |
+
self.z_loss_coeff = z_loss_coeff
|
| 81 |
+
# size related
|
| 82 |
+
self.decoder_embed_dim = decoder_embed_dim
|
| 83 |
+
self.decoder_value_embed_dim = decoder_value_embed_dim
|
| 84 |
+
self.decoder_retention_heads = decoder_retention_heads
|
| 85 |
+
self.decoder_ffn_embed_dim = decoder_ffn_embed_dim
|
| 86 |
+
self.decoder_layers = decoder_layers
|
| 87 |
+
# normalization related
|
| 88 |
+
self.decoder_normalize_before = decoder_normalize_before
|
| 89 |
+
self.activation_fn = activation_fn
|
| 90 |
+
self.dropout = dropout
|
| 91 |
+
self.drop_path_rate = drop_path_rate
|
| 92 |
+
self.activation_dropout = activation_dropout
|
| 93 |
+
self.no_scale_embedding = no_scale_embedding
|
| 94 |
+
self.layernorm_embedding = layernorm_embedding
|
| 95 |
+
self.deepnorm = deepnorm
|
| 96 |
+
self.subln = subln
|
| 97 |
+
self.use_ffn_rms_norm = use_ffn_rms_norm
|
| 98 |
+
self.layernorm_eps = layernorm_eps
|
| 99 |
+
# Blockwise
|
| 100 |
+
self.recurrent_chunk_size = recurrent_chunk_size
|
| 101 |
+
self.forward_impl = forward_impl
|
| 102 |
+
|
| 103 |
+
if self.deepnorm:
|
| 104 |
+
self.decoder_normalize_before = False
|
| 105 |
+
self.subln = False
|
| 106 |
+
if self.subln:
|
| 107 |
+
self.decoder_normalize_before = True
|
| 108 |
+
self.deepnorm = False
|
| 109 |
+
|
| 110 |
+
super().__init__(
|
| 111 |
+
is_decoder=is_decoder,
|
| 112 |
+
pad_token_id=pad_token_id,
|
| 113 |
+
eos_token_id=eos_token_id,
|
| 114 |
+
use_cache=use_cache,
|
| 115 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 116 |
+
**kwargs
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def override(self, args):
|
| 120 |
+
for hp in self.__dict__.keys():
|
| 121 |
+
if getattr(args, hp, None) is not None:
|
| 122 |
+
self.__dict__[hp] = getattr(args, hp, None)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 33619,
|
| 6 |
+
"transformers_version": "4.34.1"
|
| 7 |
+
}
|
modeling_retnet.py
ADDED
|
@@ -0,0 +1,1317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# by syncdoth: https://github.com/syncdoth/RetNet/blob/main/retnet/modeling_retnet.py
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from timm.models.layers import drop_path
|
| 12 |
+
from torch import nn
|
| 13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 14 |
+
from transformers import top_k_top_p_filtering
|
| 15 |
+
from transformers.modeling_outputs import ModelOutput, SequenceClassifierOutputWithPast
|
| 16 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
+
from transformers.utils import logging
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
from apex.normalization import FusedLayerNorm as LayerNorm
|
| 21 |
+
except ModuleNotFoundError:
|
| 22 |
+
from torch.nn import LayerNorm
|
| 23 |
+
|
| 24 |
+
from .configuration_retnet import RetNetConfig
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# helper functions
|
| 30 |
+
def split_heads(tensors, bsz, seqlen, num_heads):
|
| 31 |
+
assert isinstance(tensors, (tuple, list))
|
| 32 |
+
return [x.view(bsz, seqlen, num_heads, -1).transpose(1, 2) for x in tensors]
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def rotate_every_two(x):
|
| 36 |
+
x1 = x[:, :, :, ::2]
|
| 37 |
+
x2 = x[:, :, :, 1::2]
|
| 38 |
+
x = torch.stack((-x2, x1), dim=-1)
|
| 39 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def theta_shift(x, sin, cos):
|
| 43 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_activation_fn(activation):
|
| 47 |
+
if activation == "relu":
|
| 48 |
+
return F.relu
|
| 49 |
+
elif activation == "gelu":
|
| 50 |
+
return F.gelu
|
| 51 |
+
elif activation == "swish":
|
| 52 |
+
return F.silu
|
| 53 |
+
else:
|
| 54 |
+
raise NotImplementedError
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class RMSNorm(nn.Module):
|
| 58 |
+
def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine=True):
|
| 59 |
+
super().__init__()
|
| 60 |
+
self.normalized_shape = dim
|
| 61 |
+
self.eps = eps
|
| 62 |
+
self.elementwise_affine = elementwise_affine
|
| 63 |
+
if self.elementwise_affine:
|
| 64 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 65 |
+
else:
|
| 66 |
+
self.register_parameter("weight", None)
|
| 67 |
+
|
| 68 |
+
def _norm(self, x):
|
| 69 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
output = self._norm(x.float()).type_as(x)
|
| 73 |
+
if self.weight is not None:
|
| 74 |
+
output = output * self.weight
|
| 75 |
+
return output
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class RetNetRelPos(nn.Module):
|
| 79 |
+
def __init__(self, config: RetNetConfig):
|
| 80 |
+
super().__init__()
|
| 81 |
+
self.config = config
|
| 82 |
+
num_heads = config.decoder_retention_heads
|
| 83 |
+
|
| 84 |
+
angle = 1.0 / (
|
| 85 |
+
10000 ** torch.linspace(0, 1, config.decoder_embed_dim // num_heads // 2)
|
| 86 |
+
)
|
| 87 |
+
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
|
| 88 |
+
# decay (gamma)
|
| 89 |
+
if config.use_lm_decay:
|
| 90 |
+
# NOTE: alternative way described in the paper
|
| 91 |
+
s = torch.log(torch.tensor(1 / 32))
|
| 92 |
+
e = torch.log(torch.tensor(1 / 512))
|
| 93 |
+
decay = torch.log(1 - torch.exp(torch.linspace(s, e, num_heads))) # [h,]
|
| 94 |
+
else:
|
| 95 |
+
decay = torch.log(
|
| 96 |
+
1 - 2 ** (-5 - torch.arange(num_heads, dtype=torch.float))
|
| 97 |
+
)
|
| 98 |
+
self.register_buffer("angle", angle)
|
| 99 |
+
self.register_buffer("decay", decay)
|
| 100 |
+
self.recurrent_chunk_size = config.recurrent_chunk_size
|
| 101 |
+
|
| 102 |
+
def forward(
|
| 103 |
+
self,
|
| 104 |
+
slen,
|
| 105 |
+
forward_impl="parallel",
|
| 106 |
+
recurrent_chunk_size=None,
|
| 107 |
+
retention_mask=None,
|
| 108 |
+
get_decay_scale=True,
|
| 109 |
+
):
|
| 110 |
+
if forward_impl == "recurrent":
|
| 111 |
+
sin = torch.sin(self.angle * (slen - 1))
|
| 112 |
+
cos = torch.cos(self.angle * (slen - 1))
|
| 113 |
+
retention_rel_pos = ((sin, cos), self.decay.view(1, -1, 1, 1).exp())
|
| 114 |
+
elif forward_impl == "chunkwise":
|
| 115 |
+
if recurrent_chunk_size is None:
|
| 116 |
+
recurrent_chunk_size = self.recurrent_chunk_size
|
| 117 |
+
index = torch.arange(slen).to(self.decay)
|
| 118 |
+
sin = torch.sin(index[:, None] * self.angle[None, :])
|
| 119 |
+
cos = torch.cos(index[:, None] * self.angle[None, :])
|
| 120 |
+
|
| 121 |
+
block_index = torch.arange(recurrent_chunk_size).to(self.decay)
|
| 122 |
+
mask = torch.tril(
|
| 123 |
+
torch.ones(recurrent_chunk_size, recurrent_chunk_size)
|
| 124 |
+
).to(self.decay)
|
| 125 |
+
mask = torch.masked_fill(
|
| 126 |
+
block_index[:, None] - block_index[None, :], ~mask.bool(), float("inf")
|
| 127 |
+
)
|
| 128 |
+
mask = torch.exp(mask * self.decay[:, None, None])
|
| 129 |
+
mask = torch.nan_to_num(mask)
|
| 130 |
+
mask = mask.unsqueeze(0) # [1, h, t, t]
|
| 131 |
+
# TODO: need to handle retention_mask
|
| 132 |
+
# scaling
|
| 133 |
+
value_inner_decay = mask[:, :, -1] / mask[:, :, -1].sum(
|
| 134 |
+
dim=-1, keepdim=True
|
| 135 |
+
)
|
| 136 |
+
value_inner_decay = value_inner_decay.unsqueeze(-1)
|
| 137 |
+
scale = mask.sum(dim=-1, keepdim=True).sqrt()
|
| 138 |
+
inner_mask = mask / scale
|
| 139 |
+
|
| 140 |
+
cross_decay = torch.exp(self.decay * recurrent_chunk_size)
|
| 141 |
+
query_inner_decay = torch.exp(self.decay[:, None] * (block_index + 1))
|
| 142 |
+
cross_decay = cross_decay[None, :, None, None]
|
| 143 |
+
query_inner_decay = query_inner_decay[None, :, :, None] / (
|
| 144 |
+
scale / mask[:, :, -1].sum(dim=-1)[:, :, None, None]
|
| 145 |
+
)
|
| 146 |
+
# decay_scale (used for kv cache)
|
| 147 |
+
if get_decay_scale:
|
| 148 |
+
decay_scale = self.compute_decay_scale(slen, retention_mask)
|
| 149 |
+
else:
|
| 150 |
+
decay_scale = None
|
| 151 |
+
retention_rel_pos = (
|
| 152 |
+
(sin, cos),
|
| 153 |
+
(
|
| 154 |
+
inner_mask,
|
| 155 |
+
cross_decay,
|
| 156 |
+
query_inner_decay,
|
| 157 |
+
value_inner_decay,
|
| 158 |
+
decay_scale,
|
| 159 |
+
),
|
| 160 |
+
)
|
| 161 |
+
else: # parallel
|
| 162 |
+
index = torch.arange(slen).to(self.decay)
|
| 163 |
+
sin = torch.sin(index[:, None] * self.angle[None, :])
|
| 164 |
+
cos = torch.cos(index[:, None] * self.angle[None, :])
|
| 165 |
+
mask = torch.tril(torch.ones(slen, slen)).to(self.decay)
|
| 166 |
+
mask = torch.masked_fill(
|
| 167 |
+
index[:, None] - index[None, :], ~mask.bool(), float("inf")
|
| 168 |
+
)
|
| 169 |
+
mask = torch.exp(mask * self.decay[:, None, None])
|
| 170 |
+
mask = torch.nan_to_num(mask)
|
| 171 |
+
mask = mask.unsqueeze(0) # [1, h, t, t]
|
| 172 |
+
if retention_mask is not None:
|
| 173 |
+
# this is required for left padding
|
| 174 |
+
mask = mask * retention_mask.float().view(-1, 1, 1, slen).to(mask)
|
| 175 |
+
|
| 176 |
+
# scaling
|
| 177 |
+
mask = mask / mask.sum(dim=-1, keepdim=True).sqrt()
|
| 178 |
+
mask = torch.nan_to_num(mask, nan=0.0)
|
| 179 |
+
# decay_scale (used for kv cache)
|
| 180 |
+
if get_decay_scale:
|
| 181 |
+
decay_scale = self.compute_decay_scale(slen, retention_mask)
|
| 182 |
+
else:
|
| 183 |
+
decay_scale = None
|
| 184 |
+
# mask processing for intra decay
|
| 185 |
+
if retention_mask is not None:
|
| 186 |
+
max_non_zero = (
|
| 187 |
+
torch.cumsum(retention_mask, dim=-1).max(dim=-1).indices
|
| 188 |
+
) # [b,]
|
| 189 |
+
intra_decay = mask[range(mask.shape[0]), :, max_non_zero]
|
| 190 |
+
else:
|
| 191 |
+
intra_decay = mask[:, :, -1]
|
| 192 |
+
|
| 193 |
+
retention_rel_pos = ((sin, cos), (mask, intra_decay, decay_scale))
|
| 194 |
+
|
| 195 |
+
return retention_rel_pos
|
| 196 |
+
|
| 197 |
+
def compute_decay_scale(self, slen, retention_mask=None):
|
| 198 |
+
exponent = torch.arange(slen, device=self.decay.device).float()
|
| 199 |
+
decay_scale = self.decay.exp().view(-1, 1) ** exponent.view(1, -1) # [h, t]
|
| 200 |
+
if retention_mask is not None:
|
| 201 |
+
seqlen = retention_mask.sum(dim=-1) # [b,]
|
| 202 |
+
bsz = seqlen.size(0)
|
| 203 |
+
decay_scale = decay_scale.unsqueeze(0).repeat(bsz, 1, 1) # [b, h, t]
|
| 204 |
+
for i, pos in enumerate(seqlen):
|
| 205 |
+
# the formula for decay_scale is `sum(gamma^i) for i in [0, slen).`
|
| 206 |
+
# Since the retention_mask is 0 for padding, we can set the decay_scale
|
| 207 |
+
# to 0 for the padding positions.
|
| 208 |
+
decay_scale[i, :, pos.item() :] = 0
|
| 209 |
+
else:
|
| 210 |
+
bsz = 1
|
| 211 |
+
decay_scale = decay_scale.sum(-1).view(bsz, -1, 1, 1) # [b, h, 1, 1]
|
| 212 |
+
return decay_scale
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class MultiScaleRetention(nn.Module):
|
| 216 |
+
def __init__(
|
| 217 |
+
self,
|
| 218 |
+
config: RetNetConfig,
|
| 219 |
+
gate_fn="swish",
|
| 220 |
+
use_bias=False,
|
| 221 |
+
tensor_parallel=False,
|
| 222 |
+
):
|
| 223 |
+
super().__init__()
|
| 224 |
+
self.config = config
|
| 225 |
+
self.embed_dim = config.decoder_embed_dim
|
| 226 |
+
self.value_dim = config.decoder_value_embed_dim
|
| 227 |
+
self.num_heads = config.decoder_retention_heads
|
| 228 |
+
self.head_dim = self.value_dim // self.num_heads
|
| 229 |
+
self.key_dim = self.embed_dim // self.num_heads
|
| 230 |
+
self.scaling = self.key_dim**-0.5
|
| 231 |
+
|
| 232 |
+
self.gate_fn = get_activation_fn(activation=str(gate_fn))
|
| 233 |
+
|
| 234 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=use_bias)
|
| 235 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=use_bias)
|
| 236 |
+
self.v_proj = nn.Linear(self.embed_dim, self.value_dim, bias=use_bias)
|
| 237 |
+
self.g_proj = nn.Linear(self.embed_dim, self.value_dim, bias=use_bias)
|
| 238 |
+
|
| 239 |
+
self.out_proj = nn.Linear(self.value_dim, self.embed_dim, bias=use_bias)
|
| 240 |
+
|
| 241 |
+
self.group_norm = RMSNorm(
|
| 242 |
+
self.head_dim, eps=config.layernorm_eps, elementwise_affine=False
|
| 243 |
+
)
|
| 244 |
+
self.reset_parameters()
|
| 245 |
+
|
| 246 |
+
if tensor_parallel:
|
| 247 |
+
self.decay_proj = nn.Linear(self.num_heads, self.num_heads, bias=False)
|
| 248 |
+
else:
|
| 249 |
+
self.decay_proj = None
|
| 250 |
+
|
| 251 |
+
def reset_parameters(self):
|
| 252 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=2**-2.5)
|
| 253 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=2**-2.5)
|
| 254 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=2**-2.5)
|
| 255 |
+
nn.init.xavier_uniform_(self.g_proj.weight, gain=2**-2.5)
|
| 256 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
| 257 |
+
|
| 258 |
+
def parallel_retention(self, q, k, v, decay_mask):
|
| 259 |
+
"""
|
| 260 |
+
q, # bsz * num_head * len * qk_dim
|
| 261 |
+
k, # bsz * num_head * len * qk_dim
|
| 262 |
+
v, # bsz * num_head * len * v_dim
|
| 263 |
+
decay_mask, # (1 or bsz) * num_head * len * len
|
| 264 |
+
"""
|
| 265 |
+
decay_mask, intra_decay, scale = decay_mask
|
| 266 |
+
# just return retention_rel_pos projected
|
| 267 |
+
# TODO: for shardformer
|
| 268 |
+
if self.decay_proj is not None:
|
| 269 |
+
decay_mask = self.decay_proj(decay_mask.transpose(-1, -3)).transpose(-3, -1)
|
| 270 |
+
|
| 271 |
+
# [b, h, t, t]
|
| 272 |
+
retention = q @ k.transpose(-1, -2) # (scaled dot-product)
|
| 273 |
+
retention = retention * decay_mask
|
| 274 |
+
|
| 275 |
+
# invariant after normalization
|
| 276 |
+
retention = retention / retention.detach().sum(
|
| 277 |
+
dim=-1, keepdim=True
|
| 278 |
+
).abs().clamp(min=1)
|
| 279 |
+
|
| 280 |
+
output = retention @ v # [b, h, t, v_dim / h]
|
| 281 |
+
output = output.transpose(1, 2) # [b, t, h, v_dim / h]
|
| 282 |
+
|
| 283 |
+
if self.training: # skip cache
|
| 284 |
+
return output, None, retention
|
| 285 |
+
|
| 286 |
+
if self.decay_proj is not None:
|
| 287 |
+
intra_decay = self.decay_proj(intra_decay.transpose(-1, -2)).transpose(
|
| 288 |
+
-2, -1
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# kv cache: [b, h, t, v_dim, qk_dim]
|
| 292 |
+
current_kv = k.unsqueeze(-2) * v.unsqueeze(-1)
|
| 293 |
+
intra_decay = intra_decay[:, :, :, None, None] # [b, h, t, 1, 1]
|
| 294 |
+
current_kv = (current_kv * intra_decay).sum(2) # [b, h, v_dim, qk_dim]
|
| 295 |
+
|
| 296 |
+
cache = {"prev_key_value": current_kv, "scale": scale}
|
| 297 |
+
return output, cache, retention
|
| 298 |
+
|
| 299 |
+
def recurrent_retention(
|
| 300 |
+
self, q, k, v, decay, past_key_value=None, retention_mask=None
|
| 301 |
+
):
|
| 302 |
+
"""
|
| 303 |
+
q, k, v, # bsz * num_head * 1 * qkv_dim
|
| 304 |
+
past_key_value:
|
| 305 |
+
- "prev_key_value" # bsz * num_head * v_dim * qk_dim
|
| 306 |
+
- "scale" # (1 or bsz) * num_head * 1 * 1
|
| 307 |
+
decay # (1 or bsz) * num_head * 1 * 1
|
| 308 |
+
retention_mask # bsz * 1
|
| 309 |
+
"""
|
| 310 |
+
if retention_mask is not None:
|
| 311 |
+
retention_mask = retention_mask.float().view(-1, 1, 1, 1).to(decay)
|
| 312 |
+
else:
|
| 313 |
+
retention_mask = torch.ones(k.size(0), 1, 1, 1).to(decay)
|
| 314 |
+
# (b, h, v_dim, qk_dim)
|
| 315 |
+
current_kv = k * v.transpose(-1, -2) * retention_mask
|
| 316 |
+
|
| 317 |
+
if past_key_value is not None and "prev_key_value" in past_key_value:
|
| 318 |
+
prev_kv = past_key_value["prev_key_value"]
|
| 319 |
+
prev_scale = past_key_value["scale"]
|
| 320 |
+
scale = torch.where(retention_mask == 0, prev_scale, prev_scale * decay + 1)
|
| 321 |
+
# connect prev_kv and current_kv
|
| 322 |
+
# how much to decay prev_kv
|
| 323 |
+
decay_amount = prev_scale.sqrt() * decay / scale.sqrt()
|
| 324 |
+
decay_amount = torch.where(retention_mask == 0, 1, decay_amount)
|
| 325 |
+
prev_kv = prev_kv * decay_amount # decay prev_kv
|
| 326 |
+
current_kv = current_kv / scale.sqrt() # scale current_kv
|
| 327 |
+
current_kv = torch.nan_to_num(
|
| 328 |
+
current_kv, nan=0.0
|
| 329 |
+
) # remove nan, scale might be 0
|
| 330 |
+
|
| 331 |
+
current_kv = prev_kv + current_kv
|
| 332 |
+
else:
|
| 333 |
+
scale = torch.ones_like(decay)
|
| 334 |
+
# when retention_mask is 0 at the beginning, setting scale to 1 will
|
| 335 |
+
# make the first retention to use the padding incorrectly. Hence,
|
| 336 |
+
# setting it to 0 here. This is a little ugly, so we might want to
|
| 337 |
+
# change this later. TODO: improve
|
| 338 |
+
scale = torch.where(retention_mask == 0, torch.zeros_like(decay), scale)
|
| 339 |
+
|
| 340 |
+
output = torch.sum(q * current_kv, dim=3).unsqueeze(1) # (b, 1, h, d_v)
|
| 341 |
+
|
| 342 |
+
cache = {"prev_key_value": current_kv, "scale": scale}
|
| 343 |
+
return output, cache
|
| 344 |
+
|
| 345 |
+
def chunkwise_retention(self, q, k, v, decay_mask):
|
| 346 |
+
"""
|
| 347 |
+
q, k, v, # bsz * num_head * seqlen * qkv_dim
|
| 348 |
+
past_key_value:
|
| 349 |
+
- "prev_key_value" # bsz * num_head * v_dim * qk_dim
|
| 350 |
+
- "scale" # (1 or bsz) * num_head * 1 * 1
|
| 351 |
+
decay_mask, # 1 * num_head * chunk_size * chunk_size
|
| 352 |
+
cross_decay, # 1 * num_head * 1 * 1
|
| 353 |
+
inner_decay, # 1 * num_head * chunk_size * 1
|
| 354 |
+
"""
|
| 355 |
+
# TODO: not working properly
|
| 356 |
+
(
|
| 357 |
+
decay_mask,
|
| 358 |
+
cross_decay,
|
| 359 |
+
query_inner_decay,
|
| 360 |
+
value_inner_decay,
|
| 361 |
+
decay_scale,
|
| 362 |
+
) = decay_mask
|
| 363 |
+
bsz, _, tgt_len, _ = v.size()
|
| 364 |
+
chunk_len = decay_mask.size(-1)
|
| 365 |
+
assert tgt_len % chunk_len == 0
|
| 366 |
+
num_chunks = tgt_len // chunk_len
|
| 367 |
+
|
| 368 |
+
# [b, n_c, h, t_c, qkv_dim]
|
| 369 |
+
q = q.view(bsz, self.num_heads, num_chunks, chunk_len, self.key_dim).transpose(
|
| 370 |
+
1, 2
|
| 371 |
+
)
|
| 372 |
+
k = k.view(bsz, self.num_heads, num_chunks, chunk_len, self.key_dim).transpose(
|
| 373 |
+
1, 2
|
| 374 |
+
)
|
| 375 |
+
v = v.view(bsz, self.num_heads, num_chunks, chunk_len, self.head_dim).transpose(
|
| 376 |
+
1, 2
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
k_t = k.transpose(-1, -2)
|
| 380 |
+
|
| 381 |
+
qk_mat = q @ k_t # [b, n_c, h, t_c, t_c]
|
| 382 |
+
qk_mat = qk_mat * decay_mask.unsqueeze(1)
|
| 383 |
+
inner_scale = qk_mat.detach().abs().sum(dim=-1, keepdim=True).clamp(min=1)
|
| 384 |
+
qk_mat = qk_mat / inner_scale
|
| 385 |
+
# [b, n_c, h, t_c, v_dim]
|
| 386 |
+
inner_output = torch.matmul(qk_mat, v)
|
| 387 |
+
|
| 388 |
+
# reduce kv in one chunk
|
| 389 |
+
# [b, n_c, h, qk_dim, v_dim]
|
| 390 |
+
kv = k_t @ (v * value_inner_decay)
|
| 391 |
+
# kv = kv.view(bsz, num_chunks, self.num_heads, self.key_dim, self.head_dim)
|
| 392 |
+
|
| 393 |
+
kv_recurrent = []
|
| 394 |
+
cross_scale = []
|
| 395 |
+
kv_state = torch.zeros(bsz, self.num_heads, self.key_dim, self.head_dim).to(v)
|
| 396 |
+
kv_scale = torch.ones(bsz, self.num_heads, 1, 1).to(v)
|
| 397 |
+
|
| 398 |
+
# accumulate kv by loop
|
| 399 |
+
for i in range(num_chunks):
|
| 400 |
+
kv_recurrent.append(kv_state / kv_scale)
|
| 401 |
+
cross_scale.append(kv_scale)
|
| 402 |
+
kv_state = kv_state * cross_decay + kv[:, i]
|
| 403 |
+
kv_scale = (
|
| 404 |
+
kv_state.detach()
|
| 405 |
+
.abs()
|
| 406 |
+
.sum(dim=-2, keepdim=True)
|
| 407 |
+
.max(dim=-1, keepdim=True)
|
| 408 |
+
.values.clamp(min=1)
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
kv_recurrent = torch.stack(kv_recurrent, dim=1)
|
| 412 |
+
cross_scale = torch.stack(cross_scale, dim=1)
|
| 413 |
+
|
| 414 |
+
all_scale = torch.maximum(inner_scale, cross_scale)
|
| 415 |
+
align_inner_scale = all_scale / inner_scale
|
| 416 |
+
align_cross_scale = all_scale / cross_scale
|
| 417 |
+
|
| 418 |
+
cross_output = (q * query_inner_decay.unsqueeze(1)) @ kv_recurrent
|
| 419 |
+
output = inner_output / align_inner_scale + cross_output / align_cross_scale
|
| 420 |
+
output = output.transpose(2, 3) # [b, n_c, t_c, h, v_dim]
|
| 421 |
+
|
| 422 |
+
cache = {"prev_key_value": kv_state.transpose(-2, -1), "scale": decay_scale}
|
| 423 |
+
return output, cache
|
| 424 |
+
|
| 425 |
+
def forward(
|
| 426 |
+
self,
|
| 427 |
+
hidden_states: torch.Tensor,
|
| 428 |
+
rel_pos: Tuple[Tuple[torch.Tensor]],
|
| 429 |
+
retention_mask: Optional[torch.Tensor] = None,
|
| 430 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 431 |
+
forward_impl: str = "parallel",
|
| 432 |
+
output_retentions: Optional[bool] = False,
|
| 433 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
|
| 434 |
+
B, T, H = hidden_states.size()
|
| 435 |
+
(sin, cos), decay_mask = rel_pos
|
| 436 |
+
# projections
|
| 437 |
+
q = self.q_proj(hidden_states)
|
| 438 |
+
k = self.k_proj(hidden_states)
|
| 439 |
+
v = self.v_proj(hidden_states)
|
| 440 |
+
g = self.g_proj(hidden_states)
|
| 441 |
+
# multi-head
|
| 442 |
+
q, k, v = split_heads((q, k, v), B, T, self.num_heads)
|
| 443 |
+
k *= self.scaling # for scaled dot product
|
| 444 |
+
# rotate
|
| 445 |
+
# NOTE: theta_shift has bug with mps device.
|
| 446 |
+
qr = theta_shift(q, sin, cos)
|
| 447 |
+
kr = theta_shift(k, sin, cos)
|
| 448 |
+
|
| 449 |
+
# retention
|
| 450 |
+
if forward_impl == "parallel":
|
| 451 |
+
retention_out, curr_kv, retention_weights = self.parallel_retention(
|
| 452 |
+
qr, kr, v, decay_mask
|
| 453 |
+
)
|
| 454 |
+
elif forward_impl == "recurrent":
|
| 455 |
+
retention_out, curr_kv = self.recurrent_retention(
|
| 456 |
+
qr,
|
| 457 |
+
kr,
|
| 458 |
+
v,
|
| 459 |
+
decay_mask,
|
| 460 |
+
past_key_value=past_key_value,
|
| 461 |
+
retention_mask=retention_mask,
|
| 462 |
+
)
|
| 463 |
+
elif forward_impl == "chunkwise":
|
| 464 |
+
retention_out, curr_kv = self.chunkwise_retention(qr, kr, v, decay_mask)
|
| 465 |
+
else:
|
| 466 |
+
raise ValueError(f"forward_impl {forward_impl} not supported.")
|
| 467 |
+
|
| 468 |
+
# concaat heads
|
| 469 |
+
normed = self.group_norm(retention_out).reshape(B, T, self.value_dim)
|
| 470 |
+
# out gate & proj
|
| 471 |
+
out = self.gate_fn(g) * normed
|
| 472 |
+
out = self.out_proj(out)
|
| 473 |
+
|
| 474 |
+
outputs = (out, curr_kv)
|
| 475 |
+
if output_retentions:
|
| 476 |
+
outputs += (retention_weights,) if forward_impl == "parallel" else (None,)
|
| 477 |
+
return outputs
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
class FeedForwardNetwork(nn.Module):
|
| 481 |
+
def __init__(
|
| 482 |
+
self,
|
| 483 |
+
embed_dim,
|
| 484 |
+
ffn_dim,
|
| 485 |
+
activation_fn,
|
| 486 |
+
dropout,
|
| 487 |
+
activation_dropout,
|
| 488 |
+
layernorm_eps,
|
| 489 |
+
subln=False,
|
| 490 |
+
use_rms_norm=False,
|
| 491 |
+
):
|
| 492 |
+
super().__init__()
|
| 493 |
+
self.embed_dim = embed_dim
|
| 494 |
+
self.activation_fn = get_activation_fn(activation=str(activation_fn))
|
| 495 |
+
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
|
| 496 |
+
self.dropout_module = torch.nn.Dropout(dropout)
|
| 497 |
+
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
|
| 498 |
+
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
|
| 499 |
+
if subln:
|
| 500 |
+
if use_rms_norm:
|
| 501 |
+
self.ffn_layernorm = RMSNorm(self.embed_dim, eps=layernorm_eps)
|
| 502 |
+
else:
|
| 503 |
+
self.ffn_layernorm = LayerNorm(self.embed_dim, eps=layernorm_eps)
|
| 504 |
+
else:
|
| 505 |
+
self.ffn_layernorm = None
|
| 506 |
+
|
| 507 |
+
def reset_parameters(self):
|
| 508 |
+
self.fc1.reset_parameters()
|
| 509 |
+
self.fc2.reset_parameters()
|
| 510 |
+
if self.ffn_layernorm is not None:
|
| 511 |
+
self.ffn_layernorm.reset_parameters()
|
| 512 |
+
|
| 513 |
+
def forward(self, x):
|
| 514 |
+
x_shape = x.shape
|
| 515 |
+
x = x.reshape(-1, x.size(-1))
|
| 516 |
+
x = self.fc1(x)
|
| 517 |
+
x = self.activation_fn(x.float()).type_as(x)
|
| 518 |
+
x = self.activation_dropout_module(x)
|
| 519 |
+
if self.ffn_layernorm is not None:
|
| 520 |
+
x = self.ffn_layernorm(x)
|
| 521 |
+
x = self.fc2(x)
|
| 522 |
+
x = x.view(x_shape)
|
| 523 |
+
x = self.dropout_module(x)
|
| 524 |
+
return x
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
class GLU(nn.Module):
|
| 528 |
+
def __init__(
|
| 529 |
+
self,
|
| 530 |
+
embed_dim,
|
| 531 |
+
ffn_dim,
|
| 532 |
+
activation_fn,
|
| 533 |
+
dropout,
|
| 534 |
+
activation_dropout,
|
| 535 |
+
):
|
| 536 |
+
super().__init__()
|
| 537 |
+
self.embed_dim = embed_dim
|
| 538 |
+
self.activation_fn = get_activation_fn(activation=str(activation_fn))
|
| 539 |
+
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
|
| 540 |
+
self.dropout_module = torch.nn.Dropout(dropout)
|
| 541 |
+
self.fc1 = nn.Linear(self.embed_dim, ffn_dim, bias=False)
|
| 542 |
+
self.fc2 = nn.Linear(ffn_dim, self.embed_dim, bias=False)
|
| 543 |
+
self.gate = nn.Linear(self.embed_dim, ffn_dim, bias=False)
|
| 544 |
+
|
| 545 |
+
def reset_parameters(self):
|
| 546 |
+
self.fc1.reset_parameters()
|
| 547 |
+
self.fc2.reset_parameters()
|
| 548 |
+
self.gate.reset_parameters()
|
| 549 |
+
|
| 550 |
+
def forward(self, x):
|
| 551 |
+
x_shape = x.shape
|
| 552 |
+
x = x.reshape(-1, x.size(-1))
|
| 553 |
+
g = self.gate(x)
|
| 554 |
+
x = self.fc1(x)
|
| 555 |
+
x = self.activation_fn(x.float()).type_as(x) * g
|
| 556 |
+
x = self.activation_dropout_module(x)
|
| 557 |
+
x = self.fc2(x)
|
| 558 |
+
x = x.view(x_shape)
|
| 559 |
+
x = self.dropout_module(x)
|
| 560 |
+
return x
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
class DropPath(nn.Module):
|
| 564 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 565 |
+
|
| 566 |
+
def __init__(self, drop_prob=None):
|
| 567 |
+
super(DropPath, self).__init__()
|
| 568 |
+
self.drop_prob = drop_prob
|
| 569 |
+
|
| 570 |
+
def forward(self, x):
|
| 571 |
+
return drop_path(x, self.drop_prob, self.training)
|
| 572 |
+
|
| 573 |
+
def extra_repr(self):
|
| 574 |
+
return "p={}".format(self.drop_prob)
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
class RetNetDecoderLayer(nn.Module):
|
| 578 |
+
def __init__(self, config: RetNetConfig, depth: int, tensor_parallel: bool = False):
|
| 579 |
+
super().__init__()
|
| 580 |
+
self.config = config
|
| 581 |
+
self.embed_dim = config.decoder_embed_dim
|
| 582 |
+
self.dropout_module = torch.nn.Dropout(config.dropout)
|
| 583 |
+
|
| 584 |
+
if config.drop_path_rate > 0:
|
| 585 |
+
drop_path_prob = np.linspace(
|
| 586 |
+
0, config.drop_path_rate, config.decoder_layers
|
| 587 |
+
)[depth]
|
| 588 |
+
self.drop_path = DropPath(drop_path_prob)
|
| 589 |
+
else:
|
| 590 |
+
self.drop_path = None
|
| 591 |
+
|
| 592 |
+
self.retention = MultiScaleRetention(
|
| 593 |
+
config, use_bias=False, tensor_parallel=tensor_parallel
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
self.normalize_before = config.decoder_normalize_before
|
| 597 |
+
|
| 598 |
+
self.retention_layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
|
| 599 |
+
|
| 600 |
+
self.ffn_dim = config.decoder_ffn_embed_dim
|
| 601 |
+
|
| 602 |
+
self.ffn = self.build_ffn()
|
| 603 |
+
|
| 604 |
+
self.final_layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
|
| 605 |
+
|
| 606 |
+
if config.deepnorm:
|
| 607 |
+
self.alpha = math.pow(2.0 * config.decoder_layers, 0.25)
|
| 608 |
+
else:
|
| 609 |
+
self.alpha = 1.0
|
| 610 |
+
|
| 611 |
+
def build_ffn(self):
|
| 612 |
+
if self.config.use_glu:
|
| 613 |
+
return GLU(
|
| 614 |
+
self.embed_dim,
|
| 615 |
+
self.ffn_dim,
|
| 616 |
+
self.config.activation_fn,
|
| 617 |
+
self.config.dropout,
|
| 618 |
+
self.config.activation_dropout,
|
| 619 |
+
)
|
| 620 |
+
else:
|
| 621 |
+
return FeedForwardNetwork(
|
| 622 |
+
self.embed_dim,
|
| 623 |
+
self.ffn_dim,
|
| 624 |
+
self.config.activation_fn,
|
| 625 |
+
self.config.dropout,
|
| 626 |
+
self.config.activation_dropout,
|
| 627 |
+
self.config.layernorm_eps,
|
| 628 |
+
self.config.subln,
|
| 629 |
+
self.config.use_ffn_rms_norm,
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
def residual_connection(self, x, residual):
|
| 633 |
+
return residual * self.alpha + x
|
| 634 |
+
|
| 635 |
+
def forward(
|
| 636 |
+
self,
|
| 637 |
+
hidden_states: torch.Tensor,
|
| 638 |
+
retention_rel_pos: Tuple[Tuple[torch.Tensor]],
|
| 639 |
+
retention_mask: Optional[torch.Tensor] = None,
|
| 640 |
+
forward_impl: str = "parallel",
|
| 641 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 642 |
+
output_retentions: Optional[bool] = False,
|
| 643 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
|
| 644 |
+
residual = hidden_states
|
| 645 |
+
if self.normalize_before:
|
| 646 |
+
hidden_states = self.retention_layer_norm(hidden_states)
|
| 647 |
+
|
| 648 |
+
msr_outs = self.retention(
|
| 649 |
+
hidden_states,
|
| 650 |
+
retention_rel_pos,
|
| 651 |
+
retention_mask=retention_mask,
|
| 652 |
+
past_key_value=past_key_value,
|
| 653 |
+
forward_impl=forward_impl,
|
| 654 |
+
output_retentions=output_retentions,
|
| 655 |
+
)
|
| 656 |
+
hidden_states = msr_outs[0]
|
| 657 |
+
curr_kv = msr_outs[1]
|
| 658 |
+
|
| 659 |
+
hidden_states = self.dropout_module(hidden_states)
|
| 660 |
+
|
| 661 |
+
if self.drop_path is not None:
|
| 662 |
+
hidden_states = self.drop_path(hidden_states)
|
| 663 |
+
|
| 664 |
+
hidden_states = self.residual_connection(hidden_states, residual)
|
| 665 |
+
if not self.normalize_before:
|
| 666 |
+
hidden_states = self.retention_layer_norm(hidden_states)
|
| 667 |
+
|
| 668 |
+
residual = hidden_states
|
| 669 |
+
if self.normalize_before:
|
| 670 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 671 |
+
|
| 672 |
+
hidden_states = self.ffn(hidden_states)
|
| 673 |
+
|
| 674 |
+
if self.drop_path is not None:
|
| 675 |
+
hidden_states = self.drop_path(hidden_states)
|
| 676 |
+
|
| 677 |
+
hidden_states = self.residual_connection(hidden_states, residual)
|
| 678 |
+
if not self.normalize_before:
|
| 679 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 680 |
+
|
| 681 |
+
outputs = (hidden_states, curr_kv)
|
| 682 |
+
|
| 683 |
+
if output_retentions:
|
| 684 |
+
outputs += (msr_outs[2],)
|
| 685 |
+
return outputs
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
class RetNetPreTrainedModel(PreTrainedModel):
|
| 689 |
+
# copied from LlamaPretrainedModel
|
| 690 |
+
config_class = RetNetConfig
|
| 691 |
+
base_model_prefix = "model"
|
| 692 |
+
supports_gradient_checkpointing = True
|
| 693 |
+
_no_split_modules = ["RetNetDecoderLayer"]
|
| 694 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
| 695 |
+
|
| 696 |
+
def _init_weights(self, module):
|
| 697 |
+
"""
|
| 698 |
+
Following original retnet, weights are already initialized in their own
|
| 699 |
+
ways within their own init.
|
| 700 |
+
"""
|
| 701 |
+
pass
|
| 702 |
+
# below is copied from LlamaPretrainedModel
|
| 703 |
+
# std = self.config.initializer_range
|
| 704 |
+
# if isinstance(module, nn.Linear):
|
| 705 |
+
# module.weight.data.normal_(mean=0.0, std=std)
|
| 706 |
+
# if module.bias is not None:
|
| 707 |
+
# module.bias.data.zero_()
|
| 708 |
+
# elif isinstance(module, nn.Embedding):
|
| 709 |
+
# module.weight.data.normal_(mean=0.0, std=std)
|
| 710 |
+
# if module.padding_idx is not None:
|
| 711 |
+
# module.weight.data[module.padding_idx].zero_()
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
@dataclass
|
| 715 |
+
class RetNetOutputWithPast(ModelOutput):
|
| 716 |
+
"""
|
| 717 |
+
class for RetNet model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
| 718 |
+
|
| 719 |
+
config:
|
| 720 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, decoder_embed_dim)`):
|
| 721 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 722 |
+
|
| 723 |
+
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
| 724 |
+
decoder_embed_dim)` is output.
|
| 725 |
+
past_key_values (`List(Dict(str, torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 726 |
+
- "prev_key_value": shape=(bsz * num_head * v_dim * qk_dim)
|
| 727 |
+
- "scale": shape=((1 or bsz) * num_head * 1 * 1)
|
| 728 |
+
|
| 729 |
+
Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
|
| 730 |
+
that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 731 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 732 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 733 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, decoder_embed_dim)`.
|
| 734 |
+
|
| 735 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 736 |
+
retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
|
| 737 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 738 |
+
sequence_length)`.
|
| 739 |
+
|
| 740 |
+
Retentions weights, used for visualization.
|
| 741 |
+
|
| 742 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, for backward compatibility. Same as retentions.
|
| 743 |
+
"""
|
| 744 |
+
|
| 745 |
+
last_hidden_state: torch.FloatTensor = None
|
| 746 |
+
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None
|
| 747 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 748 |
+
retentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 749 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
class RetNetModel(RetNetPreTrainedModel):
|
| 753 |
+
def __init__(
|
| 754 |
+
self,
|
| 755 |
+
config: RetNetConfig,
|
| 756 |
+
embed_tokens: nn.Embedding = None,
|
| 757 |
+
tensor_parallel: bool = False,
|
| 758 |
+
):
|
| 759 |
+
super().__init__(config)
|
| 760 |
+
self.config = config
|
| 761 |
+
|
| 762 |
+
self.dropout_module = torch.nn.Dropout(config.dropout)
|
| 763 |
+
|
| 764 |
+
self.embed_dim = config.decoder_embed_dim
|
| 765 |
+
self.embed_scale = (
|
| 766 |
+
1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
+
if embed_tokens is None:
|
| 770 |
+
embed_tokens = nn.Embedding(
|
| 771 |
+
config.vocab_size, config.decoder_embed_dim, config.pad_token_id
|
| 772 |
+
)
|
| 773 |
+
self.embed_tokens = embed_tokens
|
| 774 |
+
|
| 775 |
+
if config.layernorm_embedding:
|
| 776 |
+
self.layernorm_embedding = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
|
| 777 |
+
else:
|
| 778 |
+
self.layernorm_embedding = None
|
| 779 |
+
|
| 780 |
+
self.layers = nn.ModuleList([])
|
| 781 |
+
|
| 782 |
+
for i in range(config.decoder_layers):
|
| 783 |
+
self.layers.append(
|
| 784 |
+
RetNetDecoderLayer(config, depth=i, tensor_parallel=tensor_parallel)
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
self.decoder_layers = len(self.layers)
|
| 788 |
+
|
| 789 |
+
if config.decoder_normalize_before:
|
| 790 |
+
self.layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
|
| 791 |
+
else:
|
| 792 |
+
self.layer_norm = None
|
| 793 |
+
|
| 794 |
+
self.retnet_rel_pos = RetNetRelPos(config)
|
| 795 |
+
self.recurrent_chunk_size = config.recurrent_chunk_size
|
| 796 |
+
|
| 797 |
+
if config.deepnorm:
|
| 798 |
+
init_scale = math.pow(8.0 * config.decoder_layers, 0.25)
|
| 799 |
+
for name, p in self.named_parameters():
|
| 800 |
+
if (
|
| 801 |
+
"fc1" in name
|
| 802 |
+
or "fc2" in name
|
| 803 |
+
or "out_proj" in name
|
| 804 |
+
or "v_proj" in name
|
| 805 |
+
):
|
| 806 |
+
p.data.div_(init_scale)
|
| 807 |
+
|
| 808 |
+
if config.subln and not config.use_glu:
|
| 809 |
+
init_scale = math.sqrt(math.log(config.decoder_layers * 2))
|
| 810 |
+
for name, p in self.named_parameters():
|
| 811 |
+
if (
|
| 812 |
+
"fc1" in name
|
| 813 |
+
or "fc2" in name
|
| 814 |
+
or "out_proj" in name
|
| 815 |
+
or "v_proj" in name
|
| 816 |
+
):
|
| 817 |
+
p.data.mul_(init_scale)
|
| 818 |
+
|
| 819 |
+
self.gradient_checkpointing = False
|
| 820 |
+
self.post_init()
|
| 821 |
+
|
| 822 |
+
def get_input_embeddings(self):
|
| 823 |
+
return self.embed_tokens
|
| 824 |
+
|
| 825 |
+
def set_input_embeddings(self, value):
|
| 826 |
+
self.embed_tokens = value
|
| 827 |
+
|
| 828 |
+
def forward_embedding(
|
| 829 |
+
self,
|
| 830 |
+
input_ids,
|
| 831 |
+
forward_impl,
|
| 832 |
+
inputs_embeds=None,
|
| 833 |
+
past_key_values=None,
|
| 834 |
+
):
|
| 835 |
+
# if past_key_values is not None:
|
| 836 |
+
if forward_impl == "recurrent":
|
| 837 |
+
input_ids = input_ids[:, -1:]
|
| 838 |
+
|
| 839 |
+
if inputs_embeds is None:
|
| 840 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 841 |
+
|
| 842 |
+
embed = self.embed_scale * inputs_embeds
|
| 843 |
+
|
| 844 |
+
if self.layernorm_embedding is not None:
|
| 845 |
+
embed = self.layernorm_embedding(embed)
|
| 846 |
+
|
| 847 |
+
embed = self.dropout_module(embed)
|
| 848 |
+
|
| 849 |
+
return embed
|
| 850 |
+
|
| 851 |
+
def forward(
|
| 852 |
+
self,
|
| 853 |
+
input_ids: torch.LongTensor = None,
|
| 854 |
+
retention_mask: Optional[torch.Tensor] = None,
|
| 855 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 856 |
+
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None,
|
| 857 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 858 |
+
output_retentions: Optional[bool] = None,
|
| 859 |
+
output_attentions: Optional[bool] = None,
|
| 860 |
+
output_hidden_states: Optional[bool] = None,
|
| 861 |
+
use_cache: Optional[bool] = None,
|
| 862 |
+
return_dict: Optional[bool] = None,
|
| 863 |
+
forward_impl: Optional[str] = "parallel",
|
| 864 |
+
recurrent_chunk_size: Optional[int] = None,
|
| 865 |
+
retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
|
| 866 |
+
) -> Union[Tuple, RetNetOutputWithPast]:
|
| 867 |
+
if output_retentions is None and output_attentions is not None:
|
| 868 |
+
output_retentions = output_attentions
|
| 869 |
+
output_retentions = (
|
| 870 |
+
output_retentions
|
| 871 |
+
if output_retentions is not None
|
| 872 |
+
else self.config.output_retentions
|
| 873 |
+
)
|
| 874 |
+
output_hidden_states = (
|
| 875 |
+
output_hidden_states
|
| 876 |
+
if output_hidden_states is not None
|
| 877 |
+
else self.config.output_hidden_states
|
| 878 |
+
)
|
| 879 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 880 |
+
|
| 881 |
+
return_dict = (
|
| 882 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 883 |
+
)
|
| 884 |
+
|
| 885 |
+
# retrieve input_ids and inputs_embeds
|
| 886 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 887 |
+
raise ValueError(
|
| 888 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 889 |
+
)
|
| 890 |
+
elif input_ids is not None:
|
| 891 |
+
batch_size, seq_length = input_ids.shape
|
| 892 |
+
elif inputs_embeds is not None:
|
| 893 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 894 |
+
else:
|
| 895 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 896 |
+
|
| 897 |
+
# embed tokens
|
| 898 |
+
if inputs_embeds is None:
|
| 899 |
+
inputs_embeds = self.forward_embedding(
|
| 900 |
+
input_ids, forward_impl, inputs_embeds, past_key_values
|
| 901 |
+
)
|
| 902 |
+
|
| 903 |
+
if retention_mask is None and attention_mask is not None:
|
| 904 |
+
retention_mask = attention_mask
|
| 905 |
+
if retention_mask is not None and forward_impl == "recurrent":
|
| 906 |
+
retention_mask = retention_mask[:, -1:]
|
| 907 |
+
|
| 908 |
+
hidden_states = inputs_embeds
|
| 909 |
+
|
| 910 |
+
# handling chunking here
|
| 911 |
+
if recurrent_chunk_size is None:
|
| 912 |
+
recurrent_chunk_size = self.recurrent_chunk_size
|
| 913 |
+
need_pad_for_chunkwise = (
|
| 914 |
+
forward_impl == "chunkwise" and seq_length % recurrent_chunk_size != 0
|
| 915 |
+
)
|
| 916 |
+
if need_pad_for_chunkwise:
|
| 917 |
+
padding_len = recurrent_chunk_size - seq_length % recurrent_chunk_size
|
| 918 |
+
slen = seq_length + padding_len
|
| 919 |
+
hidden_states = F.pad(hidden_states, (0, 0, 0, padding_len))
|
| 920 |
+
else:
|
| 921 |
+
slen = seq_length
|
| 922 |
+
# relative position
|
| 923 |
+
if retention_rel_pos is None:
|
| 924 |
+
retention_rel_pos = self.retnet_rel_pos(
|
| 925 |
+
slen,
|
| 926 |
+
forward_impl=forward_impl,
|
| 927 |
+
recurrent_chunk_size=recurrent_chunk_size,
|
| 928 |
+
retention_mask=retention_mask,
|
| 929 |
+
get_decay_scale=not self.training,
|
| 930 |
+
)
|
| 931 |
+
|
| 932 |
+
# start running through the decoder layers
|
| 933 |
+
all_hidden_states = () if output_hidden_states else None
|
| 934 |
+
all_retentions = () if output_retentions else None
|
| 935 |
+
# layers * [bsz, num_head, qk_dim, decoder_embed_dim]
|
| 936 |
+
next_decoder_cache = () if use_cache else None
|
| 937 |
+
|
| 938 |
+
for idx, layer in enumerate(self.layers):
|
| 939 |
+
if output_hidden_states:
|
| 940 |
+
all_hidden_states += (hidden_states,)
|
| 941 |
+
past_key_value = (
|
| 942 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 943 |
+
)
|
| 944 |
+
|
| 945 |
+
if self.gradient_checkpointing and self.training:
|
| 946 |
+
|
| 947 |
+
def create_custom_forward(module):
|
| 948 |
+
def custom_forward(*inputs):
|
| 949 |
+
return module(*inputs, output_retentions)
|
| 950 |
+
|
| 951 |
+
return custom_forward
|
| 952 |
+
|
| 953 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 954 |
+
create_custom_forward(layer),
|
| 955 |
+
hidden_states,
|
| 956 |
+
retention_rel_pos,
|
| 957 |
+
retention_mask,
|
| 958 |
+
forward_impl,
|
| 959 |
+
past_key_value,
|
| 960 |
+
)
|
| 961 |
+
else:
|
| 962 |
+
layer_outputs = layer(
|
| 963 |
+
hidden_states,
|
| 964 |
+
retention_rel_pos,
|
| 965 |
+
retention_mask=retention_mask,
|
| 966 |
+
forward_impl=forward_impl,
|
| 967 |
+
past_key_value=past_key_value,
|
| 968 |
+
output_retentions=output_retentions,
|
| 969 |
+
)
|
| 970 |
+
|
| 971 |
+
hidden_states = layer_outputs[0]
|
| 972 |
+
|
| 973 |
+
if use_cache:
|
| 974 |
+
next_decoder_cache += (layer_outputs[1],)
|
| 975 |
+
|
| 976 |
+
if output_retentions:
|
| 977 |
+
all_retentions += (layer_outputs[2],)
|
| 978 |
+
|
| 979 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 980 |
+
|
| 981 |
+
if need_pad_for_chunkwise:
|
| 982 |
+
hidden_states = hidden_states[:, :seq_length, :]
|
| 983 |
+
|
| 984 |
+
if self.layer_norm is not None:
|
| 985 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 986 |
+
|
| 987 |
+
# add hidden states from the last decoder layer
|
| 988 |
+
if output_hidden_states:
|
| 989 |
+
all_hidden_states += (hidden_states,)
|
| 990 |
+
|
| 991 |
+
if not return_dict:
|
| 992 |
+
return tuple(
|
| 993 |
+
v
|
| 994 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_retentions]
|
| 995 |
+
if v is not None
|
| 996 |
+
)
|
| 997 |
+
return RetNetOutputWithPast(
|
| 998 |
+
last_hidden_state=hidden_states,
|
| 999 |
+
past_key_values=next_cache,
|
| 1000 |
+
hidden_states=all_hidden_states,
|
| 1001 |
+
retentions=all_retentions,
|
| 1002 |
+
attentions=all_retentions,
|
| 1003 |
+
)
|
| 1004 |
+
|
| 1005 |
+
|
| 1006 |
+
@dataclass
|
| 1007 |
+
class RetNetCausalLMOutputWithPast(ModelOutput):
|
| 1008 |
+
"""
|
| 1009 |
+
class for RetNet causal language model (or autoregressive) outputs.
|
| 1010 |
+
|
| 1011 |
+
config:
|
| 1012 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 1013 |
+
Language modeling loss (for next-token prediction).
|
| 1014 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 1015 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 1016 |
+
past_key_values (`List(Dict(str, torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 1017 |
+
- "prev_key_value": shape=(bsz * num_head * v_dim * qk_dim)
|
| 1018 |
+
- "scale": shape=((1 or bsz) * num_head * 1 * 1)
|
| 1019 |
+
|
| 1020 |
+
Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
|
| 1021 |
+
that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 1022 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 1023 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 1024 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, decoder_embed_dim)`.
|
| 1025 |
+
|
| 1026 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 1027 |
+
retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
|
| 1028 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 1029 |
+
sequence_length)`.
|
| 1030 |
+
|
| 1031 |
+
Retentions weights, used for visualization.
|
| 1032 |
+
|
| 1033 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, for backward compatibility. Same as retentions.
|
| 1034 |
+
"""
|
| 1035 |
+
|
| 1036 |
+
loss: Optional[torch.FloatTensor] = None
|
| 1037 |
+
logits: torch.FloatTensor = None
|
| 1038 |
+
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None
|
| 1039 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 1040 |
+
retentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 1041 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 1042 |
+
|
| 1043 |
+
|
| 1044 |
+
class RetNetForCausalLM(RetNetPreTrainedModel):
|
| 1045 |
+
def __init__(
|
| 1046 |
+
self,
|
| 1047 |
+
config: RetNetConfig,
|
| 1048 |
+
embed_tokens: nn.Embedding = None,
|
| 1049 |
+
tensor_parallel: bool = False,
|
| 1050 |
+
) -> None:
|
| 1051 |
+
super().__init__(config)
|
| 1052 |
+
self.model = RetNetModel(
|
| 1053 |
+
config, embed_tokens=embed_tokens, tensor_parallel=tensor_parallel
|
| 1054 |
+
)
|
| 1055 |
+
self.lm_head = nn.Linear(
|
| 1056 |
+
config.decoder_embed_dim, config.vocab_size, bias=False
|
| 1057 |
+
)
|
| 1058 |
+
# init here
|
| 1059 |
+
torch.nn.init.normal_(
|
| 1060 |
+
self.lm_head.weight, mean=0, std=config.decoder_embed_dim**-0.5
|
| 1061 |
+
)
|
| 1062 |
+
|
| 1063 |
+
self.post_init()
|
| 1064 |
+
|
| 1065 |
+
def get_input_embeddings(self):
|
| 1066 |
+
return self.model.embed_tokens
|
| 1067 |
+
|
| 1068 |
+
def set_input_embeddings(self, value):
|
| 1069 |
+
self.model.embed_tokens = value
|
| 1070 |
+
|
| 1071 |
+
def get_output_embeddings(self):
|
| 1072 |
+
return self.lm_head
|
| 1073 |
+
|
| 1074 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1075 |
+
self.lm_head = new_embeddings
|
| 1076 |
+
|
| 1077 |
+
def set_decoder(self, decoder):
|
| 1078 |
+
self.model = decoder
|
| 1079 |
+
|
| 1080 |
+
def get_decoder(self):
|
| 1081 |
+
return self.model
|
| 1082 |
+
|
| 1083 |
+
def forward(
|
| 1084 |
+
self,
|
| 1085 |
+
input_ids: torch.LongTensor = None,
|
| 1086 |
+
retention_mask: Optional[torch.Tensor] = None,
|
| 1087 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1088 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1089 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1090 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1091 |
+
use_cache: Optional[bool] = None,
|
| 1092 |
+
output_retentions: Optional[bool] = None,
|
| 1093 |
+
output_attentions: Optional[bool] = None,
|
| 1094 |
+
output_hidden_states: Optional[bool] = None,
|
| 1095 |
+
return_dict: Optional[bool] = None,
|
| 1096 |
+
forward_impl: Optional[str] = None,
|
| 1097 |
+
recurrent_chunk_size: Optional[int] = None,
|
| 1098 |
+
retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
|
| 1099 |
+
) -> Union[Tuple, RetNetCausalLMOutputWithPast]:
|
| 1100 |
+
if output_retentions is None and output_attentions is not None:
|
| 1101 |
+
output_retentions = output_attentions
|
| 1102 |
+
output_retentions = (
|
| 1103 |
+
output_retentions
|
| 1104 |
+
if output_retentions is not None
|
| 1105 |
+
else self.config.output_retentions
|
| 1106 |
+
)
|
| 1107 |
+
output_hidden_states = (
|
| 1108 |
+
output_hidden_states
|
| 1109 |
+
if output_hidden_states is not None
|
| 1110 |
+
else self.config.output_hidden_states
|
| 1111 |
+
)
|
| 1112 |
+
return_dict = (
|
| 1113 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1114 |
+
)
|
| 1115 |
+
forward_impl = (
|
| 1116 |
+
forward_impl if forward_impl is not None else self.config.forward_impl
|
| 1117 |
+
)
|
| 1118 |
+
recurrent_chunk_size = (
|
| 1119 |
+
recurrent_chunk_size
|
| 1120 |
+
if recurrent_chunk_size is not None
|
| 1121 |
+
else self.config.recurrent_chunk_size
|
| 1122 |
+
)
|
| 1123 |
+
|
| 1124 |
+
if retention_mask is None and attention_mask is not None:
|
| 1125 |
+
retention_mask = attention_mask
|
| 1126 |
+
|
| 1127 |
+
outputs = self.model(
|
| 1128 |
+
input_ids,
|
| 1129 |
+
retention_mask=retention_mask,
|
| 1130 |
+
past_key_values=past_key_values,
|
| 1131 |
+
inputs_embeds=inputs_embeds,
|
| 1132 |
+
output_retentions=output_retentions,
|
| 1133 |
+
output_hidden_states=output_hidden_states,
|
| 1134 |
+
return_dict=return_dict,
|
| 1135 |
+
forward_impl=forward_impl,
|
| 1136 |
+
use_cache=use_cache,
|
| 1137 |
+
recurrent_chunk_size=recurrent_chunk_size,
|
| 1138 |
+
retention_rel_pos=retention_rel_pos,
|
| 1139 |
+
)
|
| 1140 |
+
|
| 1141 |
+
hidden_states = outputs[0]
|
| 1142 |
+
logits = self.lm_head(hidden_states)
|
| 1143 |
+
|
| 1144 |
+
loss = None
|
| 1145 |
+
if labels is not None:
|
| 1146 |
+
# Shift so that tokens < n predict n
|
| 1147 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1148 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1149 |
+
# Flatten the tokens
|
| 1150 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1151 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1152 |
+
shift_labels = shift_labels.view(-1)
|
| 1153 |
+
# Enable model parallelism
|
| 1154 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1155 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1156 |
+
|
| 1157 |
+
if self.config.z_loss_coeff > 0:
|
| 1158 |
+
# z_loss from PaLM paper
|
| 1159 |
+
# z_loss = 1e-4 * log(log(z)), where z = sum(exp(logits))
|
| 1160 |
+
z_loss = torch.logsumexp(shift_logits, dim=-1).log().mean()
|
| 1161 |
+
loss += self.config.z_loss_coeff * z_loss
|
| 1162 |
+
|
| 1163 |
+
if not return_dict:
|
| 1164 |
+
output = (logits,) + outputs[1:]
|
| 1165 |
+
return (loss,) + output if loss is not None else output
|
| 1166 |
+
|
| 1167 |
+
return RetNetCausalLMOutputWithPast(
|
| 1168 |
+
loss=loss,
|
| 1169 |
+
logits=logits,
|
| 1170 |
+
past_key_values=outputs.past_key_values,
|
| 1171 |
+
hidden_states=outputs.hidden_states,
|
| 1172 |
+
retentions=outputs.retentions,
|
| 1173 |
+
attentions=outputs.retentions,
|
| 1174 |
+
)
|
| 1175 |
+
|
| 1176 |
+
def _crop_past_key_values(model, past_key_values, maximum_length):
|
| 1177 |
+
"""Since retnet's kv do not have length, no need to crop. Just return"""
|
| 1178 |
+
return past_key_values
|
| 1179 |
+
|
| 1180 |
+
def prepare_inputs_for_generation(
|
| 1181 |
+
self,
|
| 1182 |
+
input_ids,
|
| 1183 |
+
past_key_values=None,
|
| 1184 |
+
attention_mask=None,
|
| 1185 |
+
inputs_embeds=None,
|
| 1186 |
+
**kwargs,
|
| 1187 |
+
):
|
| 1188 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1189 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1190 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1191 |
+
else:
|
| 1192 |
+
model_inputs = {"input_ids": input_ids}
|
| 1193 |
+
|
| 1194 |
+
forward_impl = kwargs.get("forward_impl", "parallel")
|
| 1195 |
+
if past_key_values is not None:
|
| 1196 |
+
forward_impl = "recurrent"
|
| 1197 |
+
|
| 1198 |
+
model_inputs.update(
|
| 1199 |
+
{
|
| 1200 |
+
"past_key_values": past_key_values,
|
| 1201 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1202 |
+
"attention_mask": attention_mask,
|
| 1203 |
+
"forward_impl": forward_impl,
|
| 1204 |
+
}
|
| 1205 |
+
)
|
| 1206 |
+
return model_inputs
|
| 1207 |
+
|
| 1208 |
+
@staticmethod
|
| 1209 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1210 |
+
reordered_past = ()
|
| 1211 |
+
for layer_past in past_key_values: # dict
|
| 1212 |
+
layer_past_kv = layer_past["prev_key_value"] # [b, h, v_dim / h, qk_dim]
|
| 1213 |
+
layer_past_scale = layer_past["scale"] # [b, h, 1, 1]
|
| 1214 |
+
if layer_past_scale.size(0) > 1:
|
| 1215 |
+
# this means that retention_mask is not None, so the scale for
|
| 1216 |
+
# each batch is different. We need to select the correct scale then.
|
| 1217 |
+
# NOTE: during huggingface generate, it will generate attention_mask
|
| 1218 |
+
# if it is None, so this linke will always be true. Still, having
|
| 1219 |
+
# this line here for safety.
|
| 1220 |
+
layer_past_scale = layer_past_scale.index_select(0, beam_idx)
|
| 1221 |
+
reordered_past += (
|
| 1222 |
+
{
|
| 1223 |
+
"prev_key_value": layer_past_kv.index_select(0, beam_idx),
|
| 1224 |
+
"scale": layer_past_scale,
|
| 1225 |
+
},
|
| 1226 |
+
)
|
| 1227 |
+
return reordered_past
|
| 1228 |
+
|
| 1229 |
+
def sample_token(self, logit, do_sample=False, top_k=1, top_p=1.0, temperature=1.0):
|
| 1230 |
+
if not do_sample:
|
| 1231 |
+
return torch.argmax(logit, dim=-1, keepdim=True)
|
| 1232 |
+
filtered = top_k_top_p_filtering(logit / temperature, top_k=top_k, top_p=top_p)
|
| 1233 |
+
return torch.multinomial(torch.softmax(filtered, dim=-1), num_samples=1)
|
| 1234 |
+
|
| 1235 |
+
@torch.inference_mode()
|
| 1236 |
+
def custom_generate(
|
| 1237 |
+
self,
|
| 1238 |
+
input_ids: torch.LongTensor = None,
|
| 1239 |
+
retention_mask: Optional[torch.Tensor] = None,
|
| 1240 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1241 |
+
parallel_compute_prompt=True,
|
| 1242 |
+
max_new_tokens=20,
|
| 1243 |
+
bos_token_id=0,
|
| 1244 |
+
eos_token_id=0,
|
| 1245 |
+
do_sample=False,
|
| 1246 |
+
top_k=0,
|
| 1247 |
+
top_p=1.0,
|
| 1248 |
+
temperature=1.0,
|
| 1249 |
+
early_stopping=True,
|
| 1250 |
+
):
|
| 1251 |
+
if retention_mask is None and attention_mask is not None:
|
| 1252 |
+
retention_mask = attention_mask
|
| 1253 |
+
|
| 1254 |
+
if input_ids is not None:
|
| 1255 |
+
if input_ids.shape[1] == 1:
|
| 1256 |
+
past_key_values = None
|
| 1257 |
+
elif parallel_compute_prompt:
|
| 1258 |
+
ret_mask = (
|
| 1259 |
+
retention_mask[:, :-1] if retention_mask is not None else None
|
| 1260 |
+
)
|
| 1261 |
+
outputs = self(
|
| 1262 |
+
input_ids[:, :-1],
|
| 1263 |
+
retention_mask=ret_mask,
|
| 1264 |
+
forward_impl="parallel",
|
| 1265 |
+
return_dict=True,
|
| 1266 |
+
use_cache=True,
|
| 1267 |
+
)
|
| 1268 |
+
past_key_values = outputs.past_key_values
|
| 1269 |
+
else:
|
| 1270 |
+
past_key_values = None
|
| 1271 |
+
for p_i in range(input_ids.shape[1] - 1):
|
| 1272 |
+
ret_mask = (
|
| 1273 |
+
retention_mask[:, : p_i + 1]
|
| 1274 |
+
if retention_mask is not None
|
| 1275 |
+
else None
|
| 1276 |
+
)
|
| 1277 |
+
outputs = self(
|
| 1278 |
+
input_ids[:, : p_i + 1],
|
| 1279 |
+
retention_mask=ret_mask,
|
| 1280 |
+
forward_impl="recurrent",
|
| 1281 |
+
past_key_values=past_key_values,
|
| 1282 |
+
return_dict=True,
|
| 1283 |
+
use_cache=True,
|
| 1284 |
+
)
|
| 1285 |
+
past_key_values = outputs.past_key_values
|
| 1286 |
+
|
| 1287 |
+
generated = input_ids
|
| 1288 |
+
else:
|
| 1289 |
+
generated = torch.tensor([[bos_token_id]]).to(self.lm_head.weight.device)
|
| 1290 |
+
past_key_values = None
|
| 1291 |
+
|
| 1292 |
+
for i in range(max_new_tokens):
|
| 1293 |
+
outputs = self(
|
| 1294 |
+
generated,
|
| 1295 |
+
retention_mask=retention_mask,
|
| 1296 |
+
forward_impl="recurrent",
|
| 1297 |
+
past_key_values=past_key_values,
|
| 1298 |
+
use_cache=True,
|
| 1299 |
+
return_dict=True,
|
| 1300 |
+
)
|
| 1301 |
+
logit = outputs.logits[:, -1, :] # [batch_size, vocab_size]
|
| 1302 |
+
past_key_values = outputs.past_key_values
|
| 1303 |
+
token = self.sample_token(
|
| 1304 |
+
logit,
|
| 1305 |
+
do_sample=do_sample,
|
| 1306 |
+
top_k=top_k,
|
| 1307 |
+
top_p=top_p,
|
| 1308 |
+
temperature=temperature,
|
| 1309 |
+
)
|
| 1310 |
+
generated = torch.cat([generated, token], dim=-1)
|
| 1311 |
+
if retention_mask is not None:
|
| 1312 |
+
retention_mask = torch.cat(
|
| 1313 |
+
[retention_mask, torch.ones_like(token)], dim=-1
|
| 1314 |
+
)
|
| 1315 |
+
if early_stopping and (token == eos_token_id).all():
|
| 1316 |
+
break
|
| 1317 |
+
return generated
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6cfa695b43645828a426101a2853c1bb0067a37853ec5dab76428bb2328873b
|
| 3 |
+
size 1445449221
|