--- language: - en base_model: mistralai/Mistral-7B-v0.1 inference: false license: apache-2.0 model_creator: Mistral AI model_name: Mistral 7B v0.1 model_type: mistral pipeline_tag: text-generation prompt_template: '{prompt}' quantized_by: iproskurina tags: - pretrained - gptq - 4bit datasets: - c4 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/629a3dbcd496c6dcdebf41cc/RME9Zljn25hQSj8-y61oo.png) # Mistral 7B v0.1 - GPTQ - Model creator: [Mistral AI](https://huggingface.co/mistralai) - Original model: [Mistral 7B v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) The model published in this repo was quantized to 4bit using [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ). **Quantization details** **All quantization parameters were taken from [GPTQ paper](https://arxiv.org/abs/2210.17323).** GPTQ calibration data consisted of 128 random 2048 token segments from the [C4 dataset](https://huggingface.co/datasets/c4). The grouping size used for quantization is equal to 128. ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### You can then use the following code ```python from transformers import AutoTokenizer, TextGenerationPipeline,AutoModelForCausalLM from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig pretrained_model_dir = "iproskurina/Mistral-7B-v0.1-GPTQ-4bit-g128" tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(pretrained_model_dir, device="cuda:0", model_basename="model") pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer) print(pipeline("auto-gptq is")[0]["generated_text"]) ```