--- pipeline_tag: text-generation license: other language: - en tags: - math datasets: - internlm/Lean-Workbook - internlm/Lean-Github --- # InternLM2.5-Step-Prover
InternLM-Math HOT
A state-of-the-art LEAN4 step prover. [💻 Github](https://github.com/InternLM/InternLM-Math) [📊Dataset](https://huggingface.co/datasets/internlm/Lean-Github) [📖 Paper](https://arxiv.org/abs/2410.15700)
InternLM2.5-Step-Prover-Critic is a 1.8B critic model which achieves state-of-the-art performances on MiniF2F, ProofNet, and Putnam math benchmarks, showing its formal math proving ability in multiple domains. # Dialogue Example ```python import torch from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained( "internlm/internlm2_5-step-prover-critic", device_map="cuda", torch_dtype=torch.float16, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2_5-step-prover-critic", trust_remote_code=True) chat_1 = [ {"role": "user", "content": "Which state is closer to 'no goals'?"}, {"role": "assistant", "content": "no goals"} ] chat_2 = [ {"role": "user", "content": "Which state is closer to 'no goals'?"}, {"role": "assistant", "content": "x : ℕ\nh₀ : ↑x + 4 / 100 * ↑x = 598\n⊢ 100 * x = 100 * 575"} ] score1 = model.get_score(tokenizer, chat_1) score2 = model.get_score(tokenizer, chat_2) print("score1: ", score1) print("score2: ", score2) ``` # Performance ## MiniF2F | Method | Model size | Pass | miniF2F-valid | miniF2F-test | |--------|------------|------|---------------|--------------| | **Whole-Proof Generation Methods** | | GPT-4-turbo 0409 | - | 64 | 25.4% | 23.0% | | DeepSeekMath-Base | 7B | 128 | 25.4% | 27.5% | | DeepSeek-Prover | 7B | 1 | - | 30.0% | | | | 64 | - | 46.3% | | | | 128 | - | 46.3% | | | | 8192 | - | 48.8% | | | | 65536 | - | 50.0% | | | | cumulative | *60.2%* | *52.0%* | | DeepSeek-Prover-1.5 | 7B | 32 | - | 63.5% | | TheoremLlama | - | cumulative | 36.5% | 33.6% | | **Tree Search Methods** | | COPRA (GPT-3.5) | - | 1 | - | 9.0% | | COPRA (GPT-4) | - | 1 | - | 26.6% | | DSP(Isabelle) | 540B | 100 | 42.6% | 38.9% | | Proof Artifact Co-Training | 837M | 1 | 23.9% | 24.6% | | | | 8 | 29.3% | 29.2% | | ReProver | 229M | 1 | - | 25.0% | | Llemma | 7B | 1 | 26.2% | 26.2% | | Llemma | 34B | 1 | 27.9% | 25.8% | | Curriculum Learning | 837M | 1 | 33.6% | 29.6% | | | | 8 | 41.2% | 34.5% | | | | 64 | 47.3% | 36.6% | | Hypertree Proof Search | 600M | cumulative | 58.6% | - | | | | 64 | - | 41.0% | | Lean-STaR | 7B | 64 | - | 46.3% | | InternLM2-Math | 7B | 1 | 29.9% | 30.3% | | InternLM2-Math-Plus | 7B | 1 | - | 43.4% | | InternLM2-Step-Prover | 7B | 1 | 59.8% | 48.8% | | InternLM2.5-Step-Prover | 7B | 1 | 55.4% | 47.3% | | InternLM2.5-Step-Prover+Critic | 7B | 256 | **69.6%** | **65.9%** | ## Proofnet & Putnam | Method | Model size | Pass | result | |--------|------------|------|--------| | **ProofNet benchmark** | | ReProver | 229M | 1 | 13.8% | | InternLM2-Step-Prover | 7B | 1 | 18.1% | | InternLM2.5-Step-Prover | 7B | 256 | **27.0%** | | **Putnam benchmark** | | GPT-4 | - | 10 | 1/640 | | COPRA (GPT-4) | - | 10 | 1/640 | | DSP(Isabelle) | 540B | 10 | 4/640 | | ReProver | 229M | 1 | 0/640 | | InternLM2-Step-Prover | 7B | 1 | 5/640 | | InternLM2.5-Step-Prover | 7B | 1 | **6/640** | # Citation and Tech Report ``` @misc{wu2024internlm25stepproveradvancingautomatedtheorem, title={InternLM2.5-StepProver: Advancing Automated Theorem Proving via Expert Iteration on Large-Scale LEAN Problems}, author={Zijian Wu and Suozhi Huang and Zhejian Zhou and Huaiyuan Ying and Jiayu Wang and Dahua Lin and Kai Chen}, year={2024}, eprint={2410.15700}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2410.15700}, } ```