--- language: en datasets: - kenyacorpus_v2 license: cc-by-4.0 model-index: - name: innocent-charles/Swahili-question-answer-latest-cased results: - task: type: question-answering name: Question Answering dataset: name: kenyacorpus type: kenyacorpus config: kenyacorpus split: validation metrics: - name: Exact Match type: exact_match value: 79.9309 verified: true - name: F1 type: f1 value: 82.9501 verified: true - name: total type: total value: 11869 verified: true --- # SWAHILI QUESTION - ANSWER MODEL This is the [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) model, fine-tuned using the [KenyaCorpus](https://github.com/Neurotech-HQ/Swahili-QA-dataset) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering in Swahili Language. ## Overview **Language model used:** bert-base-multilingual-cased **Language:** Kiswahili **Downstream-task:** Extractive Swahili QA **Training data:** KenyaCorpus **Eval data:** KenyaCorpus **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai) **Infrastructure**: Google Colab GPU ## Hyperparameters ``` batch_size = 16 n_epochs = 10 base_LM_model = "bert-base-multilingual-cased" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="innocent-charles/Swahili-question-answer-latest-cased") # or reader = TransformersReader(model_name_or_path="innocent-charles/Swahili-question-answer-latest-cased",tokenizer="innocent-charles/Swahili-question-answer-latest-cased") ``` For a complete example of ``Swahili-question-answer-latest-cased`` being used for Swahili Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "innocent-charles/Swahili-question-answer-latest-cased" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Asubuhi ilitupata pambajioi pa hospitali gani?', 'context': 'Asubuhi hiyo ilitupata pambajioni pa hospitali ya Uguzwa.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance ``` "exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945 ``` ## Authors **Innocent Charles:** contact@innocentcharles.com ## About Me
I build good things using Artificial Intelligence ,Data and Analytics , with over 3 Years of Experience as Applied AI Engineer & Data scientist from a strong background in Software Engineering ,with passion and extensive experience in Data and Businesses.
[Linkedin](https://www.linkedin.com/in/innocent-charles/) | [GitHub](https://github.com/innocent-charles) | [Website](innocentcharles.com)