--- library_name: peft license: cc-by-sa-4.0 base_model: defog/llama-3-sqlcoder-8b tags: - axolotl - generated_from_trainer model-index: - name: 05691978-7e16-439d-91ec-4f904e9ed32a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/llama-3-sqlcoder-8b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 987c0ea58a888d1b_train_data.json ds_type: json format: custom path: /workspace/input_data/987c0ea58a888d1b_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: infogep/05691978-7e16-439d-91ec-4f904e9ed32a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/987c0ea58a888d1b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2f74c6db-36af-4db4-a5de-2248b0740fdf wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2f74c6db-36af-4db4-a5de-2248b0740fdf warmup_steps: 5 weight_decay: 0.0 xformers_attention: true ```

# 05691978-7e16-439d-91ec-4f904e9ed32a This model is a fine-tuned version of [defog/llama-3-sqlcoder-8b](https://huggingface.co/defog/llama-3-sqlcoder-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0060 | 1 | 4.9741 | | 3.8682 | 0.0301 | 5 | 4.9526 | | 4.3139 | 0.0602 | 10 | 4.7872 | | 4.0857 | 0.0902 | 15 | 4.5525 | | 4.0968 | 0.1203 | 20 | 4.3754 | | 4.1704 | 0.1504 | 25 | 4.2788 | | 4.2918 | 0.1805 | 30 | 4.2488 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1