import logging import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from typing import Union, Optional, Tuple, List from pydantic import BaseModel from tqdm import tqdm from langchain_text_splitters import RecursiveCharacterTextSplitter from transformers import ModernBertModel, ModernBertPreTrainedModel, ModernBertConfig class TextSpan(BaseModel): s: int e: int module_name: str text: Optional[str] = None class Instance(BaseModel): original_text: str text_spans: List[TextSpan] def recursive_split(text, chunk_size=256, chunk_overlap=32): """ recursive split a text by RecursiveCharacterTextSplitter in langchain_text_splitters """ splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=lambda x: len(x.split()), separators=["\n\n", "\n", ". ", "? ", "! ", "; "], ) chunks = splitter.split_text(text) if not chunks: logging.error(f"Error, chunks is empty, text:{text}") return [text], [[0, len(text)]] chunk_span = [ # TODO a text may have multi same chunks [text.find(chunk), text.find(chunk) + len(chunk)] for chunk in chunks ] assert chunk_span[0][0] == 0 assert all((span[0] >= 0 for span in chunk_span)) return chunks, chunk_span def make_batch_input_for_prediction( texts: List[str], tokenizer, max_seq_length: int, chunk_size=256, chunk_overlap=32, prompt: str = "", fast_chunk: bool = False, batch_text_spans: List[List[TextSpan]] = None, ): """ prepare input""" if batch_text_spans is not None: ipt = tokenizer( [prompt + i for i in texts], padding="longest", truncation=True, max_length=max_seq_length, return_tensors="pt" ) for text_spans, data_len in zip(batch_text_spans, ipt["attention_mask"].sum(dim=1)): for text_span in text_spans: assert -1 < text_span.s < text_span.e <= data_len ipt["batch_text_spans"] = batch_text_spans return ipt prompt_len = len(tokenizer.tokenize(prompt)) truncated_texts = [ tokenizer.decode( tokenizer.encode(text)[:max_seq_length - prompt_len - 2], skip_special_tokens=True, clean_up_tokenization_spaces=True ).strip() for text in texts ] ipt = tokenizer( [prompt + i for i in truncated_texts], padding="longest", truncation=True, max_length=max_seq_length, return_tensors="pt" ) batch_text_spans = [] for text, data_len in zip(truncated_texts, ipt["attention_mask"].sum(dim=1)): text_spans = [ TextSpan( s=0, e=1, module_name="cls_linear", ), TextSpan( s=1 + prompt_len, e=data_len - 1, module_name="chunk_linear", ), ] if chunk_size > 1 and chunk_overlap > -1: # chunk_size > 1 means that we need chunk vector if fast_chunk: start_pos, end_pos = 1 + prompt_len, data_len - 1 for s in range(start_pos, end_pos, chunk_size): s -= chunk_overlap s = max((s, start_pos)) e = min((s + chunk_size, end_pos)) if e - s > 0 and not (s == start_pos and e == end_pos): text_spans.append( TextSpan( s=s, e=e, module_name="chunk_linear", ) ) else: chunks, chunk_span = recursive_split(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap) if len(chunks) > 1: for (s, e), chunk in zip(chunk_span, chunks): s = len(tokenizer.tokenize(text[:s])) + 1 + prompt_len e = len(tokenizer.tokenize(text[:e])) + 1 + prompt_len if s >= e: continue # original chunk vector text_spans.append( TextSpan( s=s, e=e, module_name="chunk_linear", text=chunk ) ) batch_text_spans.append(text_spans) ipt["batch_text_spans"] = batch_text_spans return ipt class DeweyV1(ModernBertPreTrainedModel): def __init__(self, config: ModernBertConfig): super().__init__(config) self.config = config self.model = ModernBertModel(config) hidden_size = config.hidden_size vector_size = config.vector_size self.linear_dict = nn.ModuleDict( { "cls_linear": nn.Linear(hidden_size, vector_size, bias=True), "chunk_linear": nn.Linear(hidden_size, vector_size, bias=True), } ) # Initialize weights and apply final processing self.post_init() def get_multi_vectors( self, batch_token_embeddings: torch.Tensor, batch_text_spans: List[List[TextSpan]], normalize_embeddings: bool = True ) -> List[torch.Tensor]: multi_vectors = [] for token_embeddings, text_spans in zip(batch_token_embeddings, batch_text_spans): chunk_vectors = [] for text_span in text_spans: s, e = text_span.s, text_span.e if s >= token_embeddings.shape[0] or s >= e: logging.warning( f"given span is wrong, s, e, token_embeddings.shape: {s, e, token_embeddings.shape}", ) s, e = 0, 1 mean_tokens_embs = token_embeddings[s:e, :].mean(dim=0, keepdim=True) # if torch.isnan(mean_tokens_embs).any(): # logging.error(f"NaNs in token_embeddings.shape: {token_embeddings.shape},s,e:{s, e}") chunk_vectors.append( self.linear_dict[text_span.module_name](mean_tokens_embs), ) chunk_vectors = torch.cat(chunk_vectors, dim=0) if normalize_embeddings: multi_vectors.append(F.normalize(chunk_vectors, p=2, dim=-1)) else: multi_vectors.append(chunk_vectors) return multi_vectors def forward( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, batch_text_spans: List[List[TextSpan]], normalize_embeddings: bool = True, *args, **kwargs ) -> List[torch.Tensor]: batch_token_embeddings = self.model(input_ids=input_ids, attention_mask=attention_mask)[0] multi_vectors = self.get_multi_vectors( batch_token_embeddings=batch_token_embeddings, batch_text_spans=batch_text_spans, normalize_embeddings=normalize_embeddings ) return multi_vectors @torch.no_grad() def encode( self, sentences: str | list[str], batch_size: int = 32, use_cuda: bool = True, show_progress_bar: bool = True, chunk_size: int = 256, chunk_overlap: int = 32, convert_to_tensor: bool = False, max_seq_length: int = 8192, normalize_embeddings: bool = True, prompt: str = "", fast_chunk: bool = False, batch_text_spans: List[List[TextSpan]] = None, *args, **kwargs ) -> Tuple[List[Union[np.ndarray, torch.Tensor]] | torch.Tensor | np.ndarray, List[List[TextSpan]]]: """ encode sentences to multi vectors Args: sentences: str | list[str], The sentences to embed batch_size: int use_cuda: bool, Whether to use GPU for inference show_progress_bar: bool, Whether to display the progress bar chunk_size: int, the number tokens of chunk, The recommended size is between 64-1024. The larger the value, the faster the speed, but the effect may decrease. The smaller the value, the slower the speed, and when the value is very small, the effect may also decrease. chunk_overlap: int, Overlap in characters between chunks convert_to_tensor: bool, If true: convert to torch fp32 tensor, otherwise will return fp32 ndarray max_seq_length: int, max length of text normalize_embeddings: bool, whether to do a L2-normalize for vectors prompt: str, the prompt for text, the final text to be encoded is "[CLS]{prompt}{sentence}[SEP]", Note, you CANNOT manually add a prompt before the sentence yourself, as this will affect our length calculation! fast_chunk: bool, if true, directly chunk on input ids, else using RecursiveCharacterTextSplitter batch_text_spans: List[List[TextSpan]], default is None, if provided, the model will not chunk text anymore *args: **kwargs: Returns: List[tensor|ndarray], each text's multi vectors """ self.eval() # remove duplicate if isinstance(sentences, str): sentences = [sentences] deduplicate_sentences = list(set(sentences)) deduplicate_sentences.sort(key=lambda x: len(x), reverse=True) # encode vectors_list, text_spans = [], [] for start in tqdm( range(0, len(deduplicate_sentences), batch_size), desc="encoding text...", disable=not show_progress_bar ): batch = deduplicate_sentences[start:start + batch_size] ipt = make_batch_input_for_prediction( batch, tokenizer=self.tokenizer, max_seq_length=max_seq_length, chunk_size=chunk_size, chunk_overlap=chunk_overlap, prompt=prompt, fast_chunk=fast_chunk, batch_text_spans=batch_text_spans ) text_spans.extend(ipt["batch_text_spans"]) ipt = {k: v.cuda() if use_cuda and isinstance(v, torch.Tensor) else v for k, v in ipt.items()} vectors_list.extend(self(**ipt, normalize_embeddings=normalize_embeddings)) # print(len(deduplicate_sentences), len(vectors_list), deduplicate_sentences[-1]) assert len(deduplicate_sentences) == len(vectors_list) sen2vecs = dict(zip(deduplicate_sentences, vectors_list)) sen2spans = dict(zip(deduplicate_sentences, text_spans)) text_spans = [sen2spans[sen] for sen in sentences] if convert_to_tensor: result = [sen2vecs[sen].cpu().float() for sen in sentences] else: result = [sen2vecs[sen].cpu().float().numpy() for sen in sentences] return result, text_spans