--- inference: true tags: - autotrain - text-classification language: - pt widget: - text: "I love AutoTrain 🤗" datasets: - alexandreteles/told_br_binary_sm co2_eq_emissions: emissions: 1.778776476039011 model-index: - name: told_br_binary_sm_bertimbau results: - task: type: binary-classification name: Binary Classification dataset: type: alexandreteles/told_br_binary_sm name: told-br metrics: - type: accuracy value: 0.815 name: Accuracy verified: true - type: f1 value: 0.793 name: F1 verified: true - type: roc_auc value: 0.895 name: AUC verified: true --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2489776826 - Base model: bert-base-portuguese-cased - Parameters: 109M - Model size: 416MB - CO2 Emissions (in grams): 1.7788 ## Validation Metrics - Loss: 0.412 - Accuracy: 0.815 - Precision: 0.793 - Recall: 0.794 - AUC: 0.895 - F1: 0.793 ## Usage This model was trained on a random subset of the [told-br](https://huggingface.co/datasets/told-br) dataset (1/3 of the original size). Our main objective is to provide a small model that can be used to classify Brazilian Portuguese tweets in a binary way ('toxic' or 'non toxic'). You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/alexandreteles/autotrain-told_br_binary_sm_bertimbau-2489776826 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alexandreteles/autotrain-told_br_binary_sm_bertimbau-2489776826", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alexandreteles/autotrain-told_br_binary_sm_bertimbau-2489776826", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```