--- tags: - autotrain - text-classification language: - pt widget: - text: "I love AutoTrain 🤗" datasets: - alexandreteles/autotrain-data-told_br_binary_sm co2_eq_emissions: emissions: 4.429755329718354 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2489276793 - Base model: BertForSequenceClassification - Parameters: 109M - Model size: 416MB - CO2 Emissions (in grams): 4.4298 ## Validation Metrics - Loss: 0.432 - Accuracy: 0.800 - Precision: 0.823 - Recall: 0.704 - AUC: 0.891 - F1: 0.759 ## Usage This model was trained on a random subset of the [told_br](https://huggingface.co/datasets/told-br) dataset (1/3 of the original size). Our main objective is to provide a small model that can be used to classify Brazilian Portuguese tweets in a binary way ('toxic' or 'non toxic'). You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/alexandreteles/autotrain-told_br_binary_sm-2489276793 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alexandreteles/told_br_binary_sm", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alexandreteles/told_br_binary_sm", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```