Commit
·
6de522d
verified
·
0
Parent(s):
Duplicate from vidore/colpali-v1.2
Browse filesCo-authored-by: Manuel Faysse <[email protected]>
- .gitattributes +36 -0
- README.md +135 -0
- adapter_config.json +26 -0
- adapter_model.safetensors +3 -0
- checkpoint-18000/README.md +202 -0
- checkpoint-18000/adapter_config.json +26 -0
- checkpoint-18000/adapter_model.safetensors +3 -0
- checkpoint-18000/optimizer.pt +3 -0
- checkpoint-18000/rng_state.pth +3 -0
- checkpoint-18000/scheduler.pt +3 -0
- checkpoint-18000/trainer_state.json +0 -0
- checkpoint-18000/training_args.bin +3 -0
- git_hash.txt +1 -0
- preprocessor_config.json +40 -0
- results.json +1 -0
- special_tokens_map.json +39 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
- training_config.yml +61 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: colpali
|
4 |
+
base_model: vidore/colpaligemma-3b-pt-448-base
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- vidore
|
9 |
+
datasets:
|
10 |
+
- vidore/colpali_train_set
|
11 |
+
---
|
12 |
+
|
13 |
+
# ColPali: Visual Retriever based on PaliGemma-3B with ColBERT strategy
|
14 |
+
|
15 |
+
ColPali is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
|
16 |
+
It is a [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
|
17 |
+
It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
|
18 |
+
|
19 |
+
<p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
|
20 |
+
|
21 |
+
## Version specificity
|
22 |
+
|
23 |
+
This version is trained with `colpali-engine==0.2.0` but can be loaded for any version `>=0.2.0`.
|
24 |
+
|
25 |
+
Compared to `colpali`, this version is trained with right padding for queries to fix unwanted tokens in the query encoding.
|
26 |
+
It also stems from the fixed `vidore/colpaligemma-3b-pt-448-base` to guarantee deterministic projection layer initialization.
|
27 |
+
It was trained for 5 epochs, with in-batch negatives and hard mined negatives and a warmup of 1000 steps (10x longer) to help reduce non-english language collapse.
|
28 |
+
|
29 |
+
Data is the same as the ColPali data described in the paper.
|
30 |
+
|
31 |
+
## Model Description
|
32 |
+
|
33 |
+
This model is built iteratively starting from an off-the-shelf [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) model.
|
34 |
+
We finetuned it to create [BiSigLIP](https://huggingface.co/vidore/bisiglip) and fed the patch-embeddings output by SigLIP to an LLM, [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) to create [BiPali](https://huggingface.co/vidore/bipali).
|
35 |
+
|
36 |
+
One benefit of inputting image patch embeddings through a language model is that they are natively mapped to a latent space similar to textual input (query).
|
37 |
+
This enables leveraging the [ColBERT](https://arxiv.org/abs/2004.12832) strategy to compute interactions between text tokens and image patches, which enables a step-change improvement in performance compared to BiPali.
|
38 |
+
|
39 |
+
## Model Training
|
40 |
+
|
41 |
+
### Dataset
|
42 |
+
Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
|
43 |
+
Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
|
44 |
+
A validation set is created with 2% of the samples to tune hyperparameters.
|
45 |
+
|
46 |
+
*Note: Multilingual data is present in the pretraining corpus of the language model (Gemma-2B) and potentially occurs during PaliGemma-3B's multimodal training.*
|
47 |
+
|
48 |
+
### Parameters
|
49 |
+
|
50 |
+
All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
|
51 |
+
with `alpha=32` and `r=32` on the transformer layers from the language model,
|
52 |
+
as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
|
53 |
+
We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.
|
54 |
+
|
55 |
+
## Usage
|
56 |
+
|
57 |
+
Install [`colpali-engine`](https://github.com/illuin-tech/colpali):
|
58 |
+
|
59 |
+
```bash
|
60 |
+
pip install colpali-engine>=0.3.0,<0.4.0
|
61 |
+
```
|
62 |
+
|
63 |
+
Then run the following code:
|
64 |
+
|
65 |
+
```python
|
66 |
+
from typing import cast
|
67 |
+
|
68 |
+
import torch
|
69 |
+
from PIL import Image
|
70 |
+
|
71 |
+
from colpali_engine.models import ColPali, ColPaliProcessor
|
72 |
+
|
73 |
+
model = cast(
|
74 |
+
ColPali,
|
75 |
+
ColPali.from_pretrained(
|
76 |
+
"vidore/colpali-v1.2",
|
77 |
+
torch_dtype=torch.bfloat16,
|
78 |
+
device_map="cuda:0", # or "mps" if on Apple Silicon
|
79 |
+
),
|
80 |
+
)
|
81 |
+
|
82 |
+
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained("vidore/colpali-v1.2"))
|
83 |
+
|
84 |
+
# Your inputs
|
85 |
+
images = [
|
86 |
+
Image.new("RGB", (32, 32), color="white"),
|
87 |
+
Image.new("RGB", (16, 16), color="black"),
|
88 |
+
]
|
89 |
+
queries = [
|
90 |
+
"Is attention really all you need?",
|
91 |
+
"Are Benjamin, Antoine, Merve, and Jo best friends?",
|
92 |
+
]
|
93 |
+
|
94 |
+
# Process the inputs
|
95 |
+
batch_images = processor.process_images(images).to(model.device)
|
96 |
+
batch_queries = processor.process_queries(queries).to(model.device)
|
97 |
+
|
98 |
+
# Forward pass
|
99 |
+
with torch.no_grad():
|
100 |
+
image_embeddings = model(**batch_images)
|
101 |
+
querry_embeddings = model(**batch_queries)
|
102 |
+
|
103 |
+
scores = processor.score_multi_vector(querry_embeddings, image_embeddings)
|
104 |
+
```
|
105 |
+
|
106 |
+
## Limitations
|
107 |
+
|
108 |
+
- **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
|
109 |
+
- **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
|
110 |
+
|
111 |
+
## License
|
112 |
+
|
113 |
+
ColPali's vision language backbone model (PaliGemma) is under `gemma` license as specified in its [model card](https://huggingface.co/google/paligemma-3b-mix-448). The adapters attached to the model are under MIT license.
|
114 |
+
|
115 |
+
## Contact
|
116 |
+
|
117 |
+
- Manuel Faysse: [email protected]
|
118 |
+
- Hugues Sibille: [email protected]
|
119 |
+
- Tony Wu: [email protected]
|
120 |
+
|
121 |
+
## Citation
|
122 |
+
|
123 |
+
If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
|
124 |
+
|
125 |
+
```bibtex
|
126 |
+
@misc{faysse2024colpaliefficientdocumentretrieval,
|
127 |
+
title={ColPali: Efficient Document Retrieval with Vision Language Models},
|
128 |
+
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
|
129 |
+
year={2024},
|
130 |
+
eprint={2407.01449},
|
131 |
+
archivePrefix={arXiv},
|
132 |
+
primaryClass={cs.IR},
|
133 |
+
url={https://arxiv.org/abs/2407.01449},
|
134 |
+
}
|
135 |
+
```
|
adapter_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "vidore/colpaligemma-3b-pt-448-base",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": "gaussian",
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": "(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
|
23 |
+
"task_type": "FEATURE_EXTRACTION",
|
24 |
+
"use_dora": false,
|
25 |
+
"use_rslora": false
|
26 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caed65068cae6d50e572d984914324a7d8a9360cdd7f4263ea82f1792614391f
|
3 |
+
size 78625112
|
checkpoint-18000/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ./models/colpaligemma-3b-pt-448-base
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-18000/adapter_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./models/colpaligemma-3b-pt-448-base",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": "gaussian",
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": "(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
|
23 |
+
"task_type": "FEATURE_EXTRACTION",
|
24 |
+
"use_dora": false,
|
25 |
+
"use_rslora": false
|
26 |
+
}
|
checkpoint-18000/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da7776b2c26c1a62f0bbc5421c7201d2e30f7a5b05c1d4623e0e1b0f75ae3f60
|
3 |
+
size 78625112
|
checkpoint-18000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d104d7b059bb1f146e59e053261c664c659adb9ca34a3dc82dcd25d491adb0ea
|
3 |
+
size 157385722
|
checkpoint-18000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83c65b52f653f8c152a0e5f0fe6aaf87b7eef99af937d84679e6fdfa74192435
|
3 |
+
size 14244
|
checkpoint-18000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:099cb1a8ae8c67ac7d0a23b3d3641d0efb236ad5bf903c5a94993ec5b5058192
|
3 |
+
size 1064
|
checkpoint-18000/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-18000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5caac953cc790faad6d9fc47d5b6516882f63815bf7f5962c459a1fa37b07e8
|
3 |
+
size 5048
|
git_hash.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
69293a9893f663429e172e512ee5908af0cffef5
|
preprocessor_config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"do_rescale",
|
8 |
+
"rescale_factor",
|
9 |
+
"do_normalize",
|
10 |
+
"image_mean",
|
11 |
+
"image_std",
|
12 |
+
"return_tensors",
|
13 |
+
"data_format",
|
14 |
+
"input_data_format",
|
15 |
+
"do_convert_rgb"
|
16 |
+
],
|
17 |
+
"do_convert_rgb": null,
|
18 |
+
"do_normalize": true,
|
19 |
+
"do_rescale": true,
|
20 |
+
"do_resize": true,
|
21 |
+
"image_mean": [
|
22 |
+
0.5,
|
23 |
+
0.5,
|
24 |
+
0.5
|
25 |
+
],
|
26 |
+
"image_processor_type": "SiglipImageProcessor",
|
27 |
+
"image_seq_length": 1024,
|
28 |
+
"image_std": [
|
29 |
+
0.5,
|
30 |
+
0.5,
|
31 |
+
0.5
|
32 |
+
],
|
33 |
+
"processor_class": "PaliGemmaProcessor",
|
34 |
+
"resample": 3,
|
35 |
+
"rescale_factor": 0.00392156862745098,
|
36 |
+
"size": {
|
37 |
+
"height": 448,
|
38 |
+
"width": 448
|
39 |
+
}
|
40 |
+
}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation_set": {"ndcg_at_1": 0.822, "ndcg_at_3": 0.86002, "ndcg_at_5": 0.87224, "ndcg_at_10": 0.88182, "ndcg_at_20": 0.88399, "ndcg_at_100": 0.89029, "ndcg_at_1000": 0.89199, "map_at_1": 0.822, "map_at_3": 0.851, "map_at_5": 0.8577, "map_at_10": 0.86159, "map_at_20": 0.86226, "map_at_100": 0.86313, "map_at_1000": 0.86322, "recall_at_1": 0.822, "recall_at_3": 0.886, "recall_at_5": 0.916, "recall_at_10": 0.946, "recall_at_20": 0.954, "recall_at_100": 0.988, "recall_at_1000": 1.0, "precision_at_1": 0.822, "precision_at_3": 0.29533, "precision_at_5": 0.1832, "precision_at_10": 0.0946, "precision_at_20": 0.0477, "precision_at_100": 0.00988, "precision_at_1000": 0.001, "mrr_at_1": 0.818, "mrr_at_3": 0.849, "mrr_at_5": 0.8554999999999998, "mrr_at_10": 0.8591857142857141, "mrr_at_20": 0.8603808764335078, "mrr_at_100": 0.8610268592085819, "mrr_at_1000": 0.8611122735411757, "naucs_at_1_max": 0.2153985688690058, "naucs_at_1_std": -0.8663183431820963, "naucs_at_1_diff1": 0.9298345185234652, "naucs_at_3_max": 0.10585679324754012, "naucs_at_3_std": -1.0737759501889552, "naucs_at_3_diff1": 0.9178001231957661, "naucs_at_5_max": 0.024365301676223024, "naucs_at_5_std": -1.1983460050687003, "naucs_at_5_diff1": 0.9034613845538216, "naucs_at_10_max": -0.10167029774873008, "naucs_at_10_std": -1.3703184977694771, "naucs_at_10_diff1": 0.9105197634609385, "naucs_at_20_max": -0.1524174887346353, "naucs_at_20_std": -1.4552226687776701, "naucs_at_20_diff1": 0.9264198432996398, "naucs_at_100_max": -0.33800186741361815, "naucs_at_100_std": -1.7399626517273559, "naucs_at_100_diff1": 0.931917211328972, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "syntheticDocQA_energy": {"ndcg_at_1": 0.89, "ndcg_at_3": 0.93917, "ndcg_at_5": 0.93917, "ndcg_at_10": 0.93917, "ndcg_at_20": 0.94156, "ndcg_at_100": 0.94521, "ndcg_at_1000": 0.94521, "map_at_1": 0.89, "map_at_3": 0.92833, "map_at_5": 0.92833, "map_at_10": 0.92833, "map_at_20": 0.92892, "map_at_100": 0.92938, "map_at_1000": 0.92938, "recall_at_1": 0.89, "recall_at_3": 0.97, "recall_at_5": 0.97, "recall_at_10": 0.97, "recall_at_20": 0.98, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.89, "precision_at_3": 0.32333, "precision_at_5": 0.194, "precision_at_10": 0.097, "precision_at_20": 0.049, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.9, "mrr_at_3": 0.9333333333333332, "mrr_at_5": 0.9333333333333332, "mrr_at_10": 0.9333333333333332, "mrr_at_20": 0.9338888888888889, "mrr_at_100": 0.9343481252149982, "mrr_at_1000": 0.9343481252149982, "naucs_at_1_max": 0.28399622025599114, "naucs_at_1_std": -0.7361051456060473, "naucs_at_1_diff1": 0.9759470835838844, "naucs_at_3_max": 0.7424525365701778, "naucs_at_3_std": -1.3478057889822568, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 0.742452536570183, "naucs_at_5_std": -1.3478057889822557, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 0.742452536570183, "naucs_at_10_std": -1.3478057889822557, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 0.9346405228758136, "naucs_at_20_std": -1.1517273576097127, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_healthcare_industry": {"ndcg_at_1": 0.92, "ndcg_at_3": 0.95024, "ndcg_at_5": 0.95454, "ndcg_at_10": 0.96077, "ndcg_at_20": 0.96077, "ndcg_at_100": 0.96077, "ndcg_at_1000": 0.96077, "map_at_1": 0.92, "map_at_3": 0.94333, "map_at_5": 0.94583, "map_at_10": 0.94826, "map_at_20": 0.94826, "map_at_100": 0.94826, "map_at_1000": 0.94826, "recall_at_1": 0.92, "recall_at_3": 0.97, "recall_at_5": 0.98, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.92, "precision_at_3": 0.32333, "precision_at_5": 0.196, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.93, "mrr_at_3": 0.9483333333333333, "mrr_at_5": 0.9508333333333333, "mrr_at_10": 0.9533730158730158, "mrr_at_20": 0.9533730158730158, "mrr_at_100": 0.9533730158730158, "mrr_at_1000": 0.9533730158730158, "naucs_at_1_max": 0.5720121381886089, "naucs_at_1_std": -0.3297152194211025, "naucs_at_1_diff1": 0.9509803921568633, "naucs_at_3_max": 0.33022097727980126, "naucs_at_3_std": -0.9192343604108318, "naucs_at_3_diff1": 0.9564270152505466, "naucs_at_5_max": 0.21825396825397442, "naucs_at_5_std": -1.7399626517273414, "naucs_at_5_diff1": 0.9346405228758136, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_artificial_intelligence_test": {"ndcg_at_1": 0.95, "ndcg_at_3": 0.97393, "ndcg_at_5": 0.97393, "ndcg_at_10": 0.97393, "ndcg_at_20": 0.97393, "ndcg_at_100": 0.97617, "ndcg_at_1000": 0.97617, "map_at_1": 0.95, "map_at_3": 0.96833, "map_at_5": 0.96833, "map_at_10": 0.96833, "map_at_20": 0.96833, "map_at_100": 0.96881, "map_at_1000": 0.96881, "recall_at_1": 0.95, "recall_at_3": 0.99, "recall_at_5": 0.99, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.95, "precision_at_3": 0.33, "precision_at_5": 0.198, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.95, "mrr_at_3": 0.9683333333333333, "mrr_at_5": 0.9683333333333333, "mrr_at_10": 0.9683333333333333, "mrr_at_20": 0.968859649122807, "mrr_at_100": 0.968859649122807, "mrr_at_1000": 0.968859649122807, "naucs_at_1_max": 0.5066293183940227, "naucs_at_1_std": -0.6262371615312773, "naucs_at_1_diff1": 0.9444444444444438, "naucs_at_3_max": 0.8692810457516356, "naucs_at_3_std": -1.7399626517274398, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 0.8692810457516413, "naucs_at_5_std": -1.7399626517273863, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 0.8692810457516413, "naucs_at_10_std": -1.7399626517273863, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 0.8692810457516413, "naucs_at_20_std": -1.7399626517273863, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_government_reports": {"ndcg_at_1": 0.86, "ndcg_at_3": 0.93047, "ndcg_at_5": 0.93478, "ndcg_at_10": 0.93834, "ndcg_at_20": 0.93834, "ndcg_at_100": 0.93834, "ndcg_at_1000": 0.93834, "map_at_1": 0.86, "map_at_3": 0.91333, "map_at_5": 0.91583, "map_at_10": 0.9175, "map_at_20": 0.9175, "map_at_100": 0.9175, "map_at_1000": 0.9175, "recall_at_1": 0.86, "recall_at_3": 0.98, "recall_at_5": 0.99, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.86, "precision_at_3": 0.32667, "precision_at_5": 0.198, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.86, "mrr_at_3": 0.9166666666666665, "mrr_at_5": 0.9166666666666665, "mrr_at_10": 0.9183333333333333, "mrr_at_20": 0.9183333333333333, "mrr_at_100": 0.9183333333333333, "mrr_at_1000": 0.9183333333333333, "naucs_at_1_max": 0.5858043508382976, "naucs_at_1_std": 0.34131217957599924, "naucs_at_1_diff1": 0.8498337259249, "naucs_at_3_max": 1.0, "naucs_at_3_std": 1.0, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "infovqa_subsampled": {"ndcg_at_1": 0.752, "ndcg_at_3": 0.80538, "ndcg_at_5": 0.81718, "ndcg_at_10": 0.82621, "ndcg_at_20": 0.83154, "ndcg_at_100": 0.84329, "ndcg_at_1000": 0.84596, "map_at_1": 0.752, "map_at_3": 0.79267, "map_at_5": 0.79937, "map_at_10": 0.80308, "map_at_20": 0.80469, "map_at_100": 0.80643, "map_at_1000": 0.80655, "recall_at_1": 0.752, "recall_at_3": 0.842, "recall_at_5": 0.87, "recall_at_10": 0.898, "recall_at_20": 0.918, "recall_at_100": 0.98, "recall_at_1000": 1.0, "precision_at_1": 0.752, "precision_at_3": 0.28067, "precision_at_5": 0.174, "precision_at_10": 0.0898, "precision_at_20": 0.0459, "precision_at_100": 0.0098, "precision_at_1000": 0.001, "mrr_at_1": 0.752, "mrr_at_3": 0.7933333333333331, "mrr_at_5": 0.7995333333333332, "mrr_at_10": 0.803242857142857, "mrr_at_20": 0.8049362776112772, "mrr_at_100": 0.8065472483651968, "mrr_at_1000": 0.8066659177387367, "naucs_at_1_max": 0.5521093170633048, "naucs_at_1_std": -0.07785006404638299, "naucs_at_1_diff1": 0.8997463426144405, "naucs_at_3_max": 0.6002557449502772, "naucs_at_3_std": -0.012867943736110006, "naucs_at_3_diff1": 0.85642900594669, "naucs_at_5_max": 0.6126712582389099, "naucs_at_5_std": 0.006642968229280956, "naucs_at_5_diff1": 0.8472635710582841, "naucs_at_10_max": 0.5868009030671214, "naucs_at_10_std": -0.006387547952498705, "naucs_at_10_diff1": 0.8159541858629611, "naucs_at_20_max": 0.6058049235954548, "naucs_at_20_std": 0.0355150190157345, "naucs_at_20_diff1": 0.8257953587939248, "naucs_at_100_max": 0.7703081232492869, "naucs_at_100_std": -0.2799253034547204, "naucs_at_100_diff1": 0.8830532212885076, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "docvqa_subsampled": {"ndcg_at_1": 0.438, "ndcg_at_3": 0.50464, "ndcg_at_5": 0.52539, "ndcg_at_10": 0.54515, "ndcg_at_20": 0.55891, "ndcg_at_100": 0.58614, "ndcg_at_1000": 0.60242, "map_at_1": 0.438, "map_at_3": 0.48767, "map_at_5": 0.49927, "map_at_10": 0.50725, "map_at_20": 0.51082, "map_at_100": 0.51421, "map_at_1000": 0.51485, "recall_at_1": 0.438, "recall_at_3": 0.554, "recall_at_5": 0.604, "recall_at_10": 0.666, "recall_at_20": 0.722, "recall_at_100": 0.874, "recall_at_1000": 1.0, "precision_at_1": 0.438, "precision_at_3": 0.18467, "precision_at_5": 0.1208, "precision_at_10": 0.0666, "precision_at_20": 0.0361, "precision_at_100": 0.00874, "precision_at_1000": 0.001, "mrr_at_1": 0.438, "mrr_at_3": 0.4856666666666668, "mrr_at_5": 0.4982666666666667, "mrr_at_10": 0.5064968253968254, "mrr_at_20": 0.5101578425616352, "mrr_at_100": 0.5137831471648001, "mrr_at_1000": 0.5143743988006569, "naucs_at_1_max": 0.3411814722367848, "naucs_at_1_std": 0.19351178785768525, "naucs_at_1_diff1": 0.8626562650787815, "naucs_at_3_max": 0.25447268440039383, "naucs_at_3_std": 0.23527321240702792, "naucs_at_3_diff1": 0.7822508539209857, "naucs_at_5_max": 0.21922361789517097, "naucs_at_5_std": 0.24044767820737398, "naucs_at_5_diff1": 0.7541297238480713, "naucs_at_10_max": 0.1511643138558891, "naucs_at_10_std": 0.2974449919221844, "naucs_at_10_diff1": 0.7404250173815784, "naucs_at_20_max": 0.07575239988792164, "naucs_at_20_std": 0.40653199402762796, "naucs_at_20_diff1": 0.7356189043230615, "naucs_at_100_max": -0.06645545519625845, "naucs_at_100_std": 0.6961981935326662, "naucs_at_100_diff1": 0.6942713965850758, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "arxivqa_subsampled": {"ndcg_at_1": 0.716, "ndcg_at_3": 0.76712, "ndcg_at_5": 0.78742, "ndcg_at_10": 0.80395, "ndcg_at_20": 0.81394, "ndcg_at_100": 0.82137, "ndcg_at_1000": 0.82402, "map_at_1": 0.716, "map_at_3": 0.755, "map_at_5": 0.7661, "map_at_10": 0.77314, "map_at_20": 0.77581, "map_at_100": 0.77698, "map_at_1000": 0.77709, "recall_at_1": 0.716, "recall_at_3": 0.802, "recall_at_5": 0.852, "recall_at_10": 0.902, "recall_at_20": 0.942, "recall_at_100": 0.98, "recall_at_1000": 1.0, "precision_at_1": 0.716, "precision_at_3": 0.26733, "precision_at_5": 0.1704, "precision_at_10": 0.0902, "precision_at_20": 0.0471, "precision_at_100": 0.0098, "precision_at_1000": 0.001, "mrr_at_1": 0.716, "mrr_at_3": 0.7533333333333331, "mrr_at_5": 0.764733333333333, "mrr_at_10": 0.7717634920634919, "mrr_at_20": 0.7747616656992816, "mrr_at_100": 0.7758456524880377, "mrr_at_1000": 0.7759607523201341, "naucs_at_1_max": 0.7289289296839049, "naucs_at_1_std": -0.07936298430464478, "naucs_at_1_diff1": 0.9118126211468693, "naucs_at_3_max": 0.7440127459185849, "naucs_at_3_std": -0.039296554366786994, "naucs_at_3_diff1": 0.8523732214704197, "naucs_at_5_max": 0.7376670092497422, "naucs_at_5_std": -0.1464476770232166, "naucs_at_5_diff1": 0.8692584394023237, "naucs_at_10_max": 0.7347605708950243, "naucs_at_10_std": -0.1508793993787991, "naucs_at_10_diff1": 0.8310752872577601, "naucs_at_20_max": 0.710067935220066, "naucs_at_20_std": -0.24474387456132013, "naucs_at_20_diff1": 0.8414308252036463, "naucs_at_100_max": 0.852007469654521, "naucs_at_100_std": 0.2826797385620789, "naucs_at_100_diff1": 0.8095238095237989, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "tabfquad_subsampled": {"ndcg_at_1": 0.82857, "ndcg_at_3": 0.87759, "ndcg_at_5": 0.89097, "ndcg_at_10": 0.90108, "ndcg_at_20": 0.90465, "ndcg_at_100": 0.90682, "ndcg_at_1000": 0.90682, "map_at_1": 0.82857, "map_at_3": 0.86607, "map_at_5": 0.87357, "map_at_10": 0.87758, "map_at_20": 0.87853, "map_at_100": 0.87889, "map_at_1000": 0.87889, "recall_at_1": 0.82857, "recall_at_3": 0.91071, "recall_at_5": 0.94286, "recall_at_10": 0.975, "recall_at_20": 0.98929, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.82857, "precision_at_3": 0.30357, "precision_at_5": 0.18857, "precision_at_10": 0.0975, "precision_at_20": 0.04946, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.8285714285714286, "mrr_at_3": 0.8648809523809524, "mrr_at_5": 0.873095238095238, "mrr_at_10": 0.8768296485260769, "mrr_at_20": 0.8780735435199719, "mrr_at_100": 0.8784422839749192, "mrr_at_1000": 0.8784422839749192, "naucs_at_1_max": 0.5117778966425275, "naucs_at_1_std": 0.18279912771560283, "naucs_at_1_diff1": 0.8180752139565501, "naucs_at_3_max": 0.5747899159663853, "naucs_at_3_std": 0.3599813258636801, "naucs_at_3_diff1": 0.799458450046687, "naucs_at_5_max": 0.7672152194211035, "naucs_at_5_std": 0.5452264239028954, "naucs_at_5_diff1": 0.8789098972922513, "naucs_at_10_max": 0.9176337201547285, "naucs_at_10_std": 0.8259303721488543, "naucs_at_10_diff1": 0.8522742430305419, "naucs_at_20_max": 0.8513849984438296, "naucs_at_20_std": 0.7424525365701908, "naucs_at_20_diff1": 0.9564270152505505, "naucs_at_100_max": 1.0, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 1.0, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "tatdqa": {"ndcg_at_1": 0.546, "ndcg_at_3": 0.65066, "ndcg_at_5": 0.67483, "ndcg_at_10": 0.69932, "ndcg_at_20": 0.71343, "ndcg_at_100": 0.72476, "ndcg_at_1000": 0.72826, "map_at_1": 0.546, "map_at_3": 0.62528, "map_at_5": 0.63862, "map_at_10": 0.64883, "map_at_20": 0.65269, "map_at_100": 0.65429, "map_at_1000": 0.65446, "recall_at_1": 0.546, "recall_at_3": 0.72399, "recall_at_5": 0.78292, "recall_at_10": 0.85809, "recall_at_20": 0.91401, "recall_at_100": 0.97474, "recall_at_1000": 1.0, "precision_at_1": 0.546, "precision_at_3": 0.24133, "precision_at_5": 0.15658, "precision_at_10": 0.08581, "precision_at_20": 0.0457, "precision_at_100": 0.00975, "precision_at_1000": 0.001, "mrr_at_1": 0.5460012026458209, "mrr_at_3": 0.6248747243936668, "mrr_at_5": 0.6380737622770104, "mrr_at_10": 0.6487178936517485, "mrr_at_20": 0.6526362286471448, "mrr_at_100": 0.6541821288626329, "mrr_at_1000": 0.6543520127179482, "naucs_at_1_max": 0.24133986493040024, "naucs_at_1_std": -0.12843954118121406, "naucs_at_1_diff1": 0.7071602689895572, "naucs_at_3_max": 0.26030616268930545, "naucs_at_3_std": -0.11795132646338957, "naucs_at_3_diff1": 0.5997176411168043, "naucs_at_5_max": 0.2730219894711174, "naucs_at_5_std": -0.10596692743471213, "naucs_at_5_diff1": 0.5663532060729257, "naucs_at_10_max": 0.36225362853714277, "naucs_at_10_std": 0.02304171698956151, "naucs_at_10_diff1": 0.5517101887320957, "naucs_at_20_max": 0.4125290416811556, "naucs_at_20_std": 0.167993127442173, "naucs_at_20_diff1": 0.5211985072803259, "naucs_at_100_max": 0.3575181920149435, "naucs_at_100_std": 0.2654763254976142, "naucs_at_100_diff1": 0.5593828030956866, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "shift_project": {"ndcg_at_1": 0.64, "ndcg_at_3": 0.79488, "ndcg_at_5": 0.8078, "ndcg_at_10": 0.81451, "ndcg_at_20": 0.8173, "ndcg_at_100": 0.82289, "ndcg_at_1000": 0.82437, "map_at_1": 0.64, "map_at_3": 0.75833, "map_at_5": 0.76583, "map_at_10": 0.76875, "map_at_20": 0.76966, "map_at_100": 0.77041, "map_at_1000": 0.7705, "recall_at_1": 0.64, "recall_at_3": 0.9, "recall_at_5": 0.93, "recall_at_10": 0.95, "recall_at_20": 0.96, "recall_at_100": 0.99, "recall_at_1000": 1.0, "precision_at_1": 0.64, "precision_at_3": 0.3, "precision_at_5": 0.186, "precision_at_10": 0.095, "precision_at_20": 0.048, "precision_at_100": 0.0099, "precision_at_1000": 0.001, "mrr_at_1": 0.64, "mrr_at_3": 0.7616666666666667, "mrr_at_5": 0.7666666666666666, "mrr_at_10": 0.7711111111111112, "mrr_at_20": 0.7711111111111112, "mrr_at_100": 0.7718950246765373, "mrr_at_1000": 0.7719893642991787, "naucs_at_1_max": 0.11254630220973243, "naucs_at_1_std": -0.10817154170392139, "naucs_at_1_diff1": 0.747333631370545, "naucs_at_3_max": 0.18342670401493752, "naucs_at_3_std": -0.27189542483660173, "naucs_at_3_diff1": 0.6793183940242762, "naucs_at_5_max": -0.14785914365746142, "naucs_at_5_std": -0.6669334400426802, "naucs_at_5_diff1": 0.7159530478858213, "naucs_at_10_max": -0.2681605975723533, "naucs_at_10_std": -0.47301587301586673, "naucs_at_10_diff1": 0.6578898225957086, "naucs_at_20_max": -0.5852007469654444, "naucs_at_20_std": -0.8085901027077429, "naucs_at_20_diff1": 0.6050420168067251, "naucs_at_100_max": 0.7222222222222041, "naucs_at_100_std": -0.17133520074697067, "naucs_at_100_diff1": 1.0, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<image>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"bos_token": {
|
12 |
+
"content": "<bos>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"eos_token": {
|
19 |
+
"content": "<eos>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"pad_token": {
|
26 |
+
"content": "<pad>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"unk_token": {
|
33 |
+
"content": "<unk>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
}
|
39 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffd310e50986db7a039948ab83441d612689e7f989198e31b5c8984ca458adf6
|
3 |
+
size 17763459
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_config.yml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config:
|
2 |
+
(): colpali_engine.utils.train_colpali_engine_models.ColModelTrainingConfig
|
3 |
+
output_dir: !path ../../../models/right_pad/train_colpali_hardneg_long
|
4 |
+
processor:
|
5 |
+
() : colpali_engine.utils.wrapper.AutoProcessorWrapper
|
6 |
+
pretrained_model_name_or_path: "./models/colpaligemma-3b-pt-448-base" # "./models/paligemma-3b-mix-448"
|
7 |
+
max_length: 50
|
8 |
+
model:
|
9 |
+
(): colpali_engine.utils.wrapper.AllPurposeWrapper
|
10 |
+
class_to_instanciate: !ext colpali_engine.models.paligemma_colbert_architecture.ColPali
|
11 |
+
pretrained_model_name_or_path: "./models/colpaligemma-3b-pt-448-base"
|
12 |
+
torch_dtype: !ext torch.bfloat16
|
13 |
+
# device_map: "auto"
|
14 |
+
# quantization_config:
|
15 |
+
# (): transformers.BitsAndBytesConfig
|
16 |
+
# load_in_4bit: true
|
17 |
+
# bnb_4bit_quant_type: "nf4"
|
18 |
+
# bnb_4bit_compute_dtype: "bfloat16"
|
19 |
+
# bnb_4bit_use_double_quant: true
|
20 |
+
|
21 |
+
dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set_ir_negs
|
22 |
+
eval_dataset_loader: !import ../data/test_data.yaml
|
23 |
+
|
24 |
+
max_length: 50
|
25 |
+
run_eval: true
|
26 |
+
add_suffix: true
|
27 |
+
loss_func:
|
28 |
+
(): colpali_engine.loss.colbert_loss.ColbertPairwiseNegativeCELoss
|
29 |
+
in_batch_term: true
|
30 |
+
tr_args:
|
31 |
+
(): transformers.training_args.TrainingArguments
|
32 |
+
output_dir: null
|
33 |
+
overwrite_output_dir: true
|
34 |
+
num_train_epochs: 5
|
35 |
+
per_device_train_batch_size: 4
|
36 |
+
# 6 x 8 gpus = 48 batch size
|
37 |
+
# gradient_accumulation_steps: 4
|
38 |
+
per_device_eval_batch_size: 4
|
39 |
+
eval_strategy: "steps"
|
40 |
+
# dataloader_num_workers: 8
|
41 |
+
# bf16: true
|
42 |
+
save_steps: 500
|
43 |
+
logging_steps: 10
|
44 |
+
eval_steps: 50
|
45 |
+
warmup_steps: 1000
|
46 |
+
learning_rate: 5e-5
|
47 |
+
save_total_limit: 1
|
48 |
+
resume_from_checkpoint: true
|
49 |
+
# optim: "paged_adamw_8bit"
|
50 |
+
|
51 |
+
peft_config:
|
52 |
+
(): peft.LoraConfig
|
53 |
+
r: 32
|
54 |
+
lora_alpha: 32
|
55 |
+
lora_dropout: 0.1
|
56 |
+
init_lora_weights: "gaussian"
|
57 |
+
bias: "none"
|
58 |
+
task_type: "FEATURE_EXTRACTION"
|
59 |
+
target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
|
60 |
+
# target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
|
61 |
+
|