/* Inference for Llama-3 Transformer model in pure C, int8 quantized forward pass. */ #include #include #include #include #include #include #include #include #if defined _WIN32 #include "win.h" #else #include #include #endif // ---------------------------------------------------------------------------- // Globals int GS = 0; // group size global for quantization of the weights // ---------------------------------------------------------------------------- // Transformer model typedef struct { int dim; // transformer dimension int hidden_dim; // for ffn layers int n_layers; // number of layers int n_heads; // number of query heads int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) int vocab_size; // vocabulary size, usually 4096 (byte-level) int seq_len; // max sequence length } Config; typedef struct { int8_t* q; // quantized values float* s; // scaling factors } QuantizedTensor; typedef struct { // token embedding table QuantizedTensor *q_tokens; // (vocab_size, dim) float* token_embedding_table; // same, but dequantized // weights for rmsnorms float* rms_att_weight; // (layer, dim) rmsnorm weights float* rms_ffn_weight; // (layer, dim) // weights for matmuls. note dim == n_heads * head_size QuantizedTensor *wq; // (layer, dim, n_heads * head_size) QuantizedTensor *wk; // (layer, dim, n_kv_heads * head_size) QuantizedTensor *wv; // (layer, dim, n_kv_heads * head_size) QuantizedTensor *wo; // (layer, n_heads * head_size, dim) // weights for ffn QuantizedTensor *w1; // (layer, hidden_dim, dim) QuantizedTensor *w2; // (layer, dim, hidden_dim) QuantizedTensor *w3; // (layer, hidden_dim, dim) // final rmsnorm float* rms_final_weight; // (dim,) // (optional) classifier weights for the logits, on the last layer QuantizedTensor *wcls; } TransformerWeights; typedef struct { // current wave of activations float *x; // activation at current time stamp (dim,) float *xb; // same, but inside a residual branch (dim,) float *xb2; // an additional buffer just for convenience (dim,) float *hb; // buffer for hidden dimension in the ffn (hidden_dim,) float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,) QuantizedTensor xq; // quantized x (dim,) QuantizedTensor hq; // quantized hb (hidden_dim,) float *q; // query (dim,) float *k; // key (dim,) float *v; // value (dim,) float *att; // buffer for scores/attention values (n_heads, seq_len) float *logits; // output logits // kv cache float* key_cache; // (layer, seq_len, dim) float* value_cache; // (layer, seq_len, dim) } RunState; typedef struct { Config config; // the hyperparameters of the architecture (the blueprint) TransformerWeights weights; // the weights of the model RunState state; // buffers for the "wave" of activations in the forward pass // some more state needed to properly clean up the memory mapping (sigh) int fd; // file descriptor for memory mapping float* data; // memory mapped data pointer ssize_t file_size; // size of the checkpoint file in bytes } Transformer; void malloc_run_state(RunState* s, Config* p) { // we calloc instead of malloc to keep valgrind happy int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads; s->x = calloc(p->dim, sizeof(float)); s->xb = calloc(p->dim, sizeof(float)); s->xb2 = calloc(p->dim, sizeof(float)); s->hb = calloc(p->hidden_dim, sizeof(float)); s->hb2 = calloc(p->hidden_dim, sizeof(float)); s->xq = (QuantizedTensor) { .q = calloc(p->dim, sizeof(int8_t)), .s = calloc(p->dim, sizeof(float)) }; s->hq = (QuantizedTensor) { .q = calloc(p->hidden_dim, sizeof(int8_t)), .s = calloc(p->hidden_dim, sizeof(float)) }; s->q = calloc(p->dim, sizeof(float)); s->k = calloc(kv_dim, sizeof(float)); s->v = calloc(kv_dim, sizeof(float)); s->att = calloc(p->n_heads * p->seq_len, sizeof(float)); s->logits = calloc(p->vocab_size, sizeof(float)); s->key_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float)); s->value_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float)); // ensure all mallocs went fine if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q || !s->k || !s->v || !s->att || !s->logits || !s->key_cache || !s->value_cache) { fprintf(stderr, "malloc failed!\n"); exit(EXIT_FAILURE); } } void free_run_state(RunState* s) { free(s->x); free(s->xb); free(s->xb2); free(s->hb); free(s->hb2); free(s->xq.q); free(s->xq.s); free(s->hq.q); free(s->hq.s); free(s->q); free(s->k); free(s->v); free(s->att); free(s->logits); free(s->key_cache); free(s->value_cache); } // ---------------------------------------------------------------------------- // Quantization functions void dequantize(QuantizedTensor *qx, float* x, int n) { for (int i = 0; i < n; i++) { x[i] = qx->q[i] * qx->s[i / GS]; } } void quantize(QuantizedTensor *qx, float* x, int n) { int num_groups = n / GS; float Q_MAX = 127.0f; for (int group = 0; group < num_groups; group++) { // find the max absolute value in the current group float wmax = 0.0; for (int i = 0; i < GS; i++) { float val = fabs(x[group * GS + i]); if (val > wmax) { wmax = val; } } // calculate and write the scaling factor float scale = wmax / Q_MAX; qx->s[group] = scale; // calculate and write the quantized values for (int i = 0; i < GS; i++) { float quant_value = x[group * GS + i] / scale; // scale int8_t quantized = (int8_t) round(quant_value); // round and clamp qx->q[group * GS + i] = quantized; } } } /* initialize `n` x quantized tensor (with `size_each` elements), starting from memory pointed at *ptr */ QuantizedTensor *init_quantized_tensors(void **ptr, int n, int size_each) { void *p = *ptr; QuantizedTensor *res = malloc(n * sizeof(QuantizedTensor)); for(int i=0; idim / p->n_heads; // first are the parameters that are kept in fp32 (the rmsnorm (1D) weights) float* fptr = (float*) ptr; // cast our pointer to float* w->rms_att_weight = fptr; fptr += p->n_layers * p->dim; w->rms_ffn_weight = fptr; fptr += p->n_layers * p->dim; w->rms_final_weight = fptr; fptr += p->dim; // now read all the quantized weights ptr = (void*)fptr; // now cast the pointer back to void* w->q_tokens = init_quantized_tensors(&ptr, 1, p->vocab_size * p->dim); // dequantize token embedding table w->token_embedding_table = malloc(p->vocab_size * p->dim * sizeof(float)); dequantize(w->q_tokens, w->token_embedding_table, p->vocab_size * p->dim); w->wq = init_quantized_tensors(&ptr, p->n_layers, p->dim * (p->n_heads * head_size)); w->wk = init_quantized_tensors(&ptr, p->n_layers, p->dim * (p->n_kv_heads * head_size)); w->wv = init_quantized_tensors(&ptr, p->n_layers, p->dim * (p->n_kv_heads * head_size)); w->wo = init_quantized_tensors(&ptr, p->n_layers, (p->n_heads * head_size) * p->dim); w->w1 = init_quantized_tensors(&ptr, p->n_layers, p->dim * p->hidden_dim); w->w2 = init_quantized_tensors(&ptr, p->n_layers, p->hidden_dim * p->dim); w->w3 = init_quantized_tensors(&ptr, p->n_layers, p->dim * p->hidden_dim); w->wcls = shared_classifier ? w->q_tokens : init_quantized_tensors(&ptr, 1, p->dim * p->vocab_size); } void read_checkpoint(char* checkpoint, Config* config, TransformerWeights* weights, int* fd, float** data, ssize_t* file_size) { FILE *file = fopen(checkpoint, "rb"); if (!file) { fprintf(stderr, "Couldn't open file %s\n", checkpoint); exit(EXIT_FAILURE); } // read in magic number (uint32), has to be 0x616b3432, i.e. "ak42" in ASCII uint32_t magic_number; if (fread(&magic_number, sizeof(uint32_t), 1, file) != 1) { exit(EXIT_FAILURE); } if (magic_number != 0x616b3432) { fprintf(stderr, "Bad magic number\n"); exit(EXIT_FAILURE); } // read in the version number (uint32), has to be 2 int version; if (fread(&version, sizeof(int), 1, file) != 1) { exit(EXIT_FAILURE); } if (version != 2) { fprintf(stderr, "Bad version %d, need version 2\n", version); exit(EXIT_FAILURE); } int header_size = 256; // the header size for version 2 in bytes // read in the Config if (fread(config, sizeof(Config), 1, file) != 1) { exit(EXIT_FAILURE); } // read in flags uint8_t shared_classifier; // a byte to indicate if the classifier is shared if (fread(&shared_classifier, sizeof(uint8_t), 1, file) != 1) { exit(EXIT_FAILURE); } int group_size; // the group size used in quantization if (fread(&group_size, sizeof(int), 1, file) != 1) { exit(EXIT_FAILURE); } GS = group_size; // set as global, as it will be used in many places // figure out the file size fseek(file, 0, SEEK_END); // move file pointer to end of file *file_size = ftell(file); // get the file size, in bytes fclose(file); // memory map the Transformer weights into the data pointer *fd = open(checkpoint, O_RDONLY); // open in read only mode if (*fd == -1) { fprintf(stderr, "open failed!\n"); exit(EXIT_FAILURE); } *data = mmap(NULL, *file_size, PROT_READ, MAP_PRIVATE, *fd, 0); if (*data == MAP_FAILED) { fprintf(stderr, "mmap failed!\n"); exit(EXIT_FAILURE); } void* weights_ptr = ((char*)*data) + header_size; // skip header bytes. char is 1 byte memory_map_weights(weights, config, weights_ptr, shared_classifier); } void build_transformer(Transformer *t, char* checkpoint_path) { // read in the Config and the Weights from the checkpoint read_checkpoint(checkpoint_path, &t->config, &t->weights, &t->fd, &t->data, &t->file_size); // allocate the RunState buffers malloc_run_state(&t->state, &t->config); } void free_transformer(Transformer* t) { // free QuantizedTensors free(t->weights.q_tokens); free(t->weights.token_embedding_table); free(t->weights.wq); free(t->weights.wk); free(t->weights.wv); free(t->weights.wo); free(t->weights.w1); free(t->weights.w2); free(t->weights.w3); if(t->weights.wcls != t->weights.q_tokens) { free(t->weights.wcls); } // close the memory mapping if (t->data != MAP_FAILED) { munmap(t->data, t->file_size); } if (t->fd != -1) { close(t->fd); } // free the RunState buffers free_run_state(&t->state); } // ---------------------------------------------------------------------------- // neural net blocks; the dynamics of the Transformer void rmsnorm(float* o, float* x, float* weight, int size) { // calculate sum of squares float ss = 0.0f; for (int j = 0; j < size; j++) { ss += x[j] * x[j]; } ss /= size; ss += 1e-5f; ss = 1.0f / sqrtf(ss); // normalize and scale for (int j = 0; j < size; j++) { o[j] = weight[j] * (ss * x[j]); } } void softmax(float* x, int size) { // find max value (for numerical stability) float max_val = x[0]; for (int i = 1; i < size; i++) { if (x[i] > max_val) { max_val = x[i]; } } // exp and sum float sum = 0.0f; for (int i = 0; i < size; i++) { x[i] = expf(x[i] - max_val); sum += x[i]; } // normalize for (int i = 0; i < size; i++) { x[i] /= sum; } } void matmul(float* xout, QuantizedTensor *x, QuantizedTensor *w, int n, int d) { // W (d,n) @ x (n,) -> xout (d,) // by far the most amount of time is spent inside this little function // inputs to this function are both quantized int i; #pragma omp parallel for private(i) for (i = 0; i < d; i++) { float val = 0.0f; int32_t ival = 0; int in = i * n; // do the matmul in groups of GS int j; for (j = 0; j <= n - GS; j += GS) { for (int k = 0; k < GS; k++) { ival += ((int32_t) x->q[j + k]) * ((int32_t) w->q[in + j + k]); } val += ((float) ival) * w->s[(in + j) / GS] * x->s[j / GS]; ival = 0; } xout[i] = val; } } float* forward(Transformer* transformer, int token, int pos) { // a few convenience variables Config* p = &transformer->config; TransformerWeights* w = &transformer->weights; RunState* s = &transformer->state; float *x = s->x; int dim = p->dim; int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads; int kv_mul = p->n_heads / p->n_kv_heads; // integer multiplier of the kv sharing in multiquery int hidden_dim = p->hidden_dim; int head_size = dim / p->n_heads; // copy the token embedding into x memcpy(x, w->token_embedding_table + token*dim, dim * sizeof(float)); // forward all the layers for(unsigned long long l = 0; l < p->n_layers; l++) { // attention rmsnorm rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim); // qkv matmuls for this position quantize(&s->xq, s->xb, dim); matmul(s->q, &s->xq, w->wq + l, dim, dim); matmul(s->k, &s->xq, w->wk + l, dim, kv_dim); matmul(s->v, &s->xq, w->wv + l, dim, kv_dim); // RoPE relative positional encoding: complex-valued rotate q and k in each head for (int i = 0; i < p->n_heads; i++) { for (int j = 0; j < head_size; j += 2) { float freq = 1.0f / powf(500000.0f, (float)j / (float)head_size); float val = pos * freq; float fcr = cosf(val); float fci = sinf(val); float q0 = s->q[i * head_size + j]; float q1 = s->q[i * head_size + j + 1]; s->q[i * head_size + j] = q0 * fcr - q1 * fci; s->q[i * head_size + j + 1] = q0 * fci + q1 * fcr; if (i < p->n_kv_heads) { float k0 = s->k[i * head_size + j]; float k1 = s->k[i * head_size + j + 1]; s->k[i * head_size + j] = k0 * fcr - k1 * fci; s->k[i * head_size + j + 1] = k0 * fci + k1 * fcr; } } } // save key,value at this time step (pos) to our kv cache int loff = l * p->seq_len * kv_dim; // kv cache layer offset for convenience float* key_cache_row = s->key_cache + loff + pos * kv_dim; float* value_cache_row = s->value_cache + loff + pos * kv_dim; memcpy(key_cache_row, s->k, kv_dim * sizeof(*key_cache_row)); memcpy(value_cache_row, s->v, kv_dim * sizeof(*value_cache_row)); // multihead attention. iterate over all heads int h; #pragma omp parallel for private(h) for (h = 0; h < p->n_heads; h++) { // get the query vector for this head float* q = s->q + h * head_size; // attention scores for this head float* att = s->att + h * p->seq_len; // iterate over all timesteps, including the current one for (int t = 0; t <= pos; t++) { // get the key vector for this head and at this timestep float* k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size; // calculate the attention score as the dot product of q and k float score = 0.0f; for (int i = 0; i < head_size; i++) { score += q[i] * k[i]; } score /= sqrtf(head_size); // save the score to the attention buffer att[t] = score; } // softmax the scores to get attention weights, from 0..pos inclusively softmax(att, pos + 1); // weighted sum of the values, store back into xb float* xb = s->xb + h * head_size; memset(xb, 0, head_size * sizeof(float)); for (int t = 0; t <= pos; t++) { // get the value vector for this head and at this timestep float* v = s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size; // get the attention weight for this timestep float a = att[t]; // accumulate the weighted value into xb for (int i = 0; i < head_size; i++) { xb[i] += a * v[i]; } } } // final matmul to get the output of the attention quantize(&s->xq, s->xb, dim); matmul(s->xb2, &s->xq, w->wo + l, dim, dim); // residual connection back into x for (int i = 0; i < dim; i++) { x[i] += s->xb2[i]; } // ffn rmsnorm rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim); // Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x)) // first calculate self.w1(x) and self.w3(x) quantize(&s->xq, s->xb, dim); matmul(s->hb, &s->xq, w->w1 + l, dim, hidden_dim); matmul(s->hb2, &s->xq, w->w3 + l, dim, hidden_dim); // SwiGLU non-linearity for (int i = 0; i < hidden_dim; i++) { float val = s->hb[i]; // silu(x)=x*s(x), where s(x) is the logistic sigmoid val *= (1.0f / (1.0f + expf(-val))); // elementwise multiply with w3(x) val *= s->hb2[i]; s->hb[i] = val; } // final matmul to get the output of the ffn quantize(&s->hq, s->hb, hidden_dim); matmul(s->xb, &s->hq, w->w2 + l, hidden_dim, dim); // residual connection for (int i = 0; i < dim; i++) { x[i] += s->xb[i]; } } // final rmsnorm rmsnorm(x, x, w->rms_final_weight, dim); // classifier into logits quantize(&s->xq, x, dim); matmul(s->logits, &s->xq, w->wcls, dim, p->vocab_size); return s->logits; } // ---------------------------------------------------------------------------- // The Byte Pair Encoding (BPE) Tokenizer that translates strings <-> tokens typedef struct { char *str; int id; } TokenIndex; typedef struct { char** vocab; float* vocab_scores; TokenIndex *sorted_vocab; int vocab_size; unsigned int max_token_length; unsigned char byte_pieces[512]; // stores all single-byte strings } Tokenizer; int compare_tokens(const void *a, const void *b) { return strcmp(((TokenIndex*)a)->str, ((TokenIndex*)b)->str); } void build_tokenizer(Tokenizer* t, char* tokenizer_path, int vocab_size) { // i should have written the vocab_size into the tokenizer file... sigh t->vocab_size = vocab_size; // malloc space to hold the scores and the strings t->vocab = (char**)malloc(vocab_size * sizeof(char*)); t->vocab_scores = (float*)malloc(vocab_size * sizeof(float)); t->sorted_vocab = NULL; // initialized lazily for (int i = 0; i < 256; i++) { t->byte_pieces[i * 2] = (unsigned char)i; t->byte_pieces[i * 2 + 1] = '\0'; } // read in the file FILE *file = fopen(tokenizer_path, "rb"); if (!file) { fprintf(stderr, "couldn't load %s\n", tokenizer_path); exit(EXIT_FAILURE); } if (fread(&t->max_token_length, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } int len; for (int i = 0; i < vocab_size; i++) { if (fread(t->vocab_scores + i, sizeof(float), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE);} if (fread(&len, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } t->vocab[i] = (char *)malloc(len + 1); if (fread(t->vocab[i], len, 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } t->vocab[i][len] = '\0'; // add the string terminating token } fclose(file); } void free_tokenizer(Tokenizer* t) { for (int i = 0; i < t->vocab_size; i++) { free(t->vocab[i]); } free(t->vocab); free(t->vocab_scores); free(t->sorted_vocab); } char* decode(Tokenizer* t, int prev_token, int token) { char *piece = t->vocab[token]; // careful, some tokens designate raw bytes, and look like e.g. '<0x01>' // parse this and convert and return the actual byte unsigned char byte_val; if (sscanf(piece, "<0x%02hhX>", &byte_val) == 1) { piece = (char*)t->byte_pieces + byte_val * 2; } return piece; } void safe_printf(char *piece, char *out_buffer) { // piece might be a raw byte token, and we only want to print printable chars or whitespace // because some of the other bytes can be various control codes, backspace, etc. if (piece == NULL) { return; } if (piece[0] == '\0') { return; } if (piece[1] == '\0') { unsigned char byte_val = piece[0]; if (!(isprint(byte_val) || isspace(byte_val))) { return; // bad byte, don't print it } } strcat(out_buffer, piece); } int str_lookup(char *str, TokenIndex *sorted_vocab, int vocab_size) { // efficiently find the perfect match for str in vocab, return its index or -1 if not found TokenIndex tok = { .str = str }; // acts as the key to search for TokenIndex *res = bsearch(&tok, sorted_vocab, vocab_size, sizeof(TokenIndex), compare_tokens); return res != NULL ? res->id : -1; } void encode(Tokenizer* t, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) { // encode the string text (input) into an upper-bound preallocated tokens[] array // bos != 0 means prepend the BOS token (=1), eos != 0 means append the EOS token (=2) if (text == NULL) { fprintf(stderr, "cannot encode NULL text\n"); exit(EXIT_FAILURE); } if (t->sorted_vocab == NULL) { // lazily malloc and sort the vocabulary t->sorted_vocab = malloc(t->vocab_size * sizeof(TokenIndex)); for (int i = 0; i < t->vocab_size; i++) { t->sorted_vocab[i].str = t->vocab[i]; t->sorted_vocab[i].id = i; } qsort(t->sorted_vocab, t->vocab_size, sizeof(TokenIndex), compare_tokens); } // create a temporary buffer that will store merge candidates of always two consecutive tokens // *2 for concat, +1 for null terminator +2 for UTF8 (in case max_token_length is 1) char* str_buffer = malloc((t->max_token_length*2 +1 +2) * sizeof(char)); size_t str_len = 0; // start at 0 tokens *n_tokens = 0; // add optional BOS (=128000) token, if desired if (bos) tokens[(*n_tokens)++] = 128000; // add_dummy_prefix is true by default // so prepend a dummy prefix token to the input string, but only if text != "" // TODO: pretty sure this isn't correct in the general case but I don't have the // energy to read more of the sentencepiece code to figure out what it's doing // Okay UTF-8 time. This will get messy. Here is the reference from Wikipedia: // Code point ? UTF-8 conversion // First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4 // U+0000 U+007F 0xxxxxxx // U+0080 U+07FF 110xxxxx 10xxxxxx // U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx // U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx // process the raw (UTF-8) byte sequence of the input string for (char *c = text; *c != '\0'; c++) { // reset buffer if the current byte is ASCII or a leading byte // 0xC0 is 11000000, so (*c & 0xC0) keeps the first 2 bits and zeros the rest // 0x80 is 10000000 // in UTF-8, all continuation bytes start with "10" in first two bits // so in English this is: "if this byte is not a continuation byte" if ((*c & 0xC0) != 0x80) { // this byte must be either a leading byte (11...) or an ASCII char (0x...) // => reset our location, as we're starting a new UTF-8 codepoint str_len = 0; } // append the current byte to the buffer str_buffer[str_len++] = *c; // ++ is post-increment, incremented after this line str_buffer[str_len] = '\0'; // while the next character is a continuation byte, continue appending // but if there are too many of them, just stop to avoid overruning str_buffer size. if ((*(c+1) & 0xC0) == 0x80 && str_len < 4) { continue; } // ok c+1 is not a continuation byte, so we've read in a full codepoint int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size); if (id != -1) { // we found this codepoint in vocab, add it as a token tokens[(*n_tokens)++] = id; } else { // byte_fallback encoding: just encode each byte as a token // +3 is here because the first 3 vocab elements are , , // so the individual bytes only start at index 3 for (int i=0; i < str_len; i++) { tokens[(*n_tokens)++] = (unsigned char)str_buffer[i] + 3; } } str_len = 0; // protect against a sequence of stray UTF8 continuation bytes } // merge the best consecutive pair or triple each iteration, according to the scores in vocab_scores while (1) { float best_score = -1e10; int best_id = -1; int best_idx = -1; int best_len = 2; // length of the best merge sequence (2 for pair, 3 for triple) // first, try to find the best pair to merge for (int i = 0; i < (*n_tokens - 1); i++) { // check if we can merge the pair (tokens[i], tokens[i+1]) sprintf(str_buffer, "%s%s", t->vocab[tokens[i]], t->vocab[tokens[i+1]]); int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size); if (id != -1 && t->vocab_scores[id] > best_score) { // this merge pair exists in vocab! record its score and position best_score = t->vocab_scores[id]; best_id = id; best_idx = i; } } // if no pair was found, try to find the best triple to merge if (best_idx == -1) { for (int i = 0; i < (*n_tokens - 2); i++) { // check if we can merge the triple (tokens[i], tokens[i+1], tokens[i+2]) sprintf(str_buffer, "%s%s%s", t->vocab[tokens[i]], t->vocab[tokens[i+1]], t->vocab[tokens[i+2]]); int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size); if (id != -1 && t->vocab_scores[id] > best_score) { // this merge triple exists in vocab! record its score and position best_score = t->vocab_scores[id]; best_id = id; best_idx = i; best_len = 3; } } } if (best_idx == -1) { break; // we couldn't find any more pairs or triples to merge, so we're done } // merge the consecutive pair or triple (best_idx, best_idx+1[, best_idx+2]) into new token best_id tokens[best_idx] = best_id; // delete token(s) at position best_idx+1 (and optionally best_idx+2), shift the entire sequence back for (int i = best_idx + 1; i < (*n_tokens - best_len + 1); i++) { tokens[i] = tokens[i + best_len - 1]; } (*n_tokens) -= (best_len - 1); // token length decreased by the number of merged tokens minus one } // add optional EOS (=128001) token, if desired if (eos) tokens[(*n_tokens)++] = 128001; free(str_buffer); } // ---------------------------------------------------------------------------- // The Sampler, which takes logits and returns a sampled token // sampling can be done in a few ways: greedy argmax, sampling, top-p sampling typedef struct { float prob; int index; } ProbIndex; // struct used when sorting probabilities during top-p sampling typedef struct { int vocab_size; ProbIndex* probindex; // buffer used in top-p sampling float temperature; float topp; unsigned long long rng_state; } Sampler; int sample_argmax(float* probabilities, int n) { // return the index that has the highest probability int max_i = 0; float max_p = probabilities[0]; for (int i = 1; i < n; i++) { if (probabilities[i] > max_p) { max_i = i; max_p = probabilities[i]; } } return max_i; } int sample_mult(float* probabilities, int n, float coin) { // sample index from probabilities (they must sum to 1!) // coin is a random number in [0, 1), usually from random_f32() float cdf = 0.0f; for (int i = 0; i < n; i++) { cdf += probabilities[i]; if (coin < cdf) { return i; } } return n - 1; // in case of rounding errors } int compare(const void* a, const void* b) { ProbIndex* a_ = (ProbIndex*) a; ProbIndex* b_ = (ProbIndex*) b; if (a_->prob > b_->prob) return -1; if (a_->prob < b_->prob) return 1; return 0; } int sample_topp(float* probabilities, int n, float topp, ProbIndex* probindex, float coin) { // top-p sampling (or "nucleus sampling") samples from the smallest set of // tokens that exceed probability topp. This way we never sample tokens that // have very low probabilities and are less likely to go "off the rails". // coin is a random number in [0, 1), usually from random_f32() int n0 = 0; // quicksort indices in descending order of probabilities // values smaller than (1 - topp) / (n - 1) cannot be part of the result // so for efficiency we crop these out as candidates before sorting const float cutoff = (1.0f - topp) / (n - 1); for (int i = 0; i < n; i++) { if (probabilities[i] >= cutoff) { probindex[n0].index = i; probindex[n0].prob = probabilities[i]; n0++; } } qsort(probindex, n0, sizeof(ProbIndex), compare); // truncate the list where cumulative probability exceeds topp float cumulative_prob = 0.0f; int last_idx = n0 - 1; // in case of rounding errors consider all elements for (int i = 0; i < n0; i++) { cumulative_prob += probindex[i].prob; if (cumulative_prob > topp) { last_idx = i; break; // we've exceeded topp by including last_idx } } // sample from the truncated list float r = coin * cumulative_prob; float cdf = 0.0f; for (int i = 0; i <= last_idx; i++) { cdf += probindex[i].prob; if (r < cdf) { return probindex[i].index; } } return probindex[last_idx].index; // in case of rounding errors } void build_sampler(Sampler* sampler, int vocab_size, float temperature, float topp, unsigned long long rng_seed) { sampler->vocab_size = vocab_size; sampler->temperature = temperature; sampler->topp = topp; sampler->rng_state = rng_seed; // buffer only used with nucleus sampling; may not need but it's ~small sampler->probindex = malloc(sampler->vocab_size * sizeof(ProbIndex)); } void free_sampler(Sampler* sampler) { free(sampler->probindex); } unsigned int random_u32(unsigned long long *state) { // xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A *state ^= *state >> 12; *state ^= *state << 25; *state ^= *state >> 27; return (*state * 0x2545F4914F6CDD1Dull) >> 32; } float random_f32(unsigned long long *state) { // random float32 in [0,1) return (random_u32(state) >> 8) / 16777216.0f; } int sample(Sampler* sampler, float* logits) { // sample the token given the logits and some hyperparameters int next; if (sampler->temperature == 0.0f) { // greedy argmax sampling: take the token with the highest probability next = sample_argmax(logits, sampler->vocab_size); } else { // apply the temperature to the logits for (int q=0; qvocab_size; q++) { logits[q] /= sampler->temperature; } // apply softmax to the logits to get the probabilities for next token softmax(logits, sampler->vocab_size); // flip a (float) coin (this is our source of entropy for sampling) float coin = random_f32(&sampler->rng_state); // we sample from this distribution to get the next token if (sampler->topp <= 0 || sampler->topp >= 1) { // simply sample from the predicted probability distribution next = sample_mult(logits, sampler->vocab_size, coin); } else { // top-p (nucleus) sampling, clamping the least likely tokens to zero next = sample_topp(logits, sampler->vocab_size, sampler->topp, sampler->probindex, coin); } } return next; } // ---------------------------------------------------------------------------- // utilities: time long time_in_ms() { // return time in milliseconds, for benchmarking the model speed struct timespec time; clock_gettime(CLOCK_REALTIME, &time); return time.tv_sec * 1000 + time.tv_nsec / 1000000; } // ---------------------------------------------------------------------------- // generation loop void generate(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler, char *prompt, int steps, char *out_buffer) { char *empty_prompt = ""; if (prompt == NULL) { prompt = empty_prompt; } // encode the (string) prompt into tokens sequence int num_prompt_tokens = 0; int* prompt_tokens = (int*)malloc((strlen(prompt)+3) * sizeof(int)); // +3 for '\0', ?BOS, ?EOS encode(tokenizer, prompt, 1, 0, prompt_tokens, &num_prompt_tokens); if (num_prompt_tokens < 1) { fprintf(stderr, "something is wrong, expected at least 1 prompt token\n"); exit(EXIT_FAILURE); } // start the main loop long start = 0; // used to time our code, only initialized after first iteration int next; // will store the next token in the sequence int token = prompt_tokens[0]; // kick off with the first token in the prompt int pos = 0; // position in the sequence while (pos < steps) { // forward the transformer to get logits for the next token float* logits = forward(transformer, token, pos); // advance the state machine if (pos < num_prompt_tokens - 1) { // if we are still processing the input prompt, force the next prompt token next = prompt_tokens[pos + 1]; } else { // otherwise sample the next token from the logits next = sample(sampler, logits); } pos++; // data-dependent terminating condition: the BOS (=1) token delimits sequences if ((next == 128001 || next == 128009) && pos > num_prompt_tokens) break; // print the token as string, decode it with the Tokenizer object char* piece = decode(tokenizer, token, next); safe_printf(piece, out_buffer); // same as printf("%s", piece), but skips "unsafe" bytes fflush(stdout); token = next; // init the timer here because the first iteration can be slower if (start == 0) { start = time_in_ms(); } } strcat(out_buffer, "\n"); // report achieved tok/s (pos-1 because the timer starts after first iteration) if (pos > 1) { long end = time_in_ms(); fprintf(stderr, "achieved tok/s: %f\n", (pos-1) / (double)(end-start)*1000); } free(prompt_tokens); } void read_stdin(const char* guide, char* buffer, size_t bufsize, char *out_buffer) { // read a line from stdin, up to but not including \n strcat(out_buffer, guide); if (fgets(buffer, bufsize, stdin) != NULL) { size_t len = strlen(buffer); if (len > 0 && buffer[len - 1] == '\n') { buffer[len - 1] = '\0'; // strip newline } } } // ---------------------------------------------------------------------------- // chat loop // I manually inspected the tokens for a few chat conversations compared to // python reference and that seemed ok, but this was not thoroughly tested and // is not safely implemented, it's more a proof of concept atm. void chat(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler, char *cli_user_prompt, char *cli_system_prompt, int steps, char *out_buffer) { // buffers for reading the system prompt and user prompt from stdin // you'll notice they are somewhat haphazardly and unsafely set atm char* system_prompt = (char*)malloc(32768 * sizeof(char)); char* user_prompt = (char*)malloc(32768 * sizeof(char)); int num_prompt_tokens = 0; int* prompt_tokens = (int*)malloc(32768 * sizeof(int)); int* system_prompt_tokens = (int*)malloc(32768 * sizeof(int)); int* user_prompt_tokens = (int*)malloc(32768 * sizeof(int)); int user_idx=0; // start the main loop int8_t user_turn = 1; // user starts int next; // will store the next token in the sequence int token; // stores the current token to feed into the transformer int pos = 0; // position in the sequence while (pos < steps) { // when it is the user's turn to contribute tokens to the dialog... if (user_turn) { // get the (optional) system prompt at position 0 if (pos == 0) { // at position 0, the user can also contribute a system prompt prompt_tokens[num_prompt_tokens++] = 128000; // "<|begin_of_text|>" prompt_tokens[num_prompt_tokens++] = 128006; // "<|start_header_id|>" prompt_tokens[num_prompt_tokens++] = 9125; // "system" prompt_tokens[num_prompt_tokens++] = 128007; // "<|end_header_id|>" prompt_tokens[num_prompt_tokens++] = 271; // "\n\n" if (cli_system_prompt == NULL) { // system prompt was not passed in, attempt to get it from stdin read_stdin("Enter system prompt (optional): ", system_prompt, 32768, out_buffer); } else { // system prompt was passed in, use it strcpy(system_prompt, cli_system_prompt); } if (system_prompt != NULL) { int num_system_prompt_tokens = 0; encode(tokenizer, system_prompt, 0, 0, system_prompt_tokens, &num_system_prompt_tokens); for (int i=0; i" } else { num_prompt_tokens = 0; } prompt_tokens[num_prompt_tokens++] = 128006; // "<|start_header_id|>" prompt_tokens[num_prompt_tokens++] = 882; // "user" prompt_tokens[num_prompt_tokens++] = 128007; // "<|end_header_id|>" prompt_tokens[num_prompt_tokens++] = 271; // "\n\n" // get the user prompt if (pos == 0 && cli_user_prompt != NULL) { // user prompt for position 0 was passed in, use it strcpy(user_prompt, cli_user_prompt); } else { // otherwise get user prompt from stdin read_stdin("User (or exit): ", user_prompt, 32768, out_buffer); if(strcmp(user_prompt, "exit")==0) break; } int num_user_prompt_tokens = 0; // encode the user prompt into tokens encode(tokenizer, user_prompt, 0, 0, user_prompt_tokens, &num_user_prompt_tokens); for (int i=0; i" prompt_tokens[num_prompt_tokens++] = 128006; // "<|start_header_id|>" prompt_tokens[num_prompt_tokens++] = 78191; // "assistant" prompt_tokens[num_prompt_tokens++] = 128007; // "<|end_header_id|>" prompt_tokens[num_prompt_tokens++] = 271; // "\n\n" user_idx = 0; // reset the user index user_turn = 0; strcat(out_buffer, "Assistant: "); } // determine the token to pass into the transformer next if (user_idx < num_prompt_tokens) { // if we are still processing the input prompt, force the next prompt token token = prompt_tokens[user_idx++]; } else { // otherwise use the next token sampled from previous turn token = next; } // EOS (=128009) token ends the Assistant turn if (user_idx >= num_prompt_tokens && (token == 128009 || token == 128001)) { user_turn = 1; } // forward the transformer to get logits for the next token float* logits = forward(transformer, token, pos); next = sample(sampler, logits); pos++; if (user_idx >= num_prompt_tokens && next != 128009 && next != 128001 && next != 128006) { // the Assistant is responding, so print its output char* piece = decode(tokenizer, token, next); safe_printf(piece, out_buffer); // same as printf("%s", piece), but skips "unsafe" bytes fflush(stdout); } if (user_idx >= num_prompt_tokens && next == 128009 || next == 128001) { printf("\n"); } } strcat(out_buffer, "\n"); free(prompt_tokens); free(system_prompt_tokens); free(user_prompt_tokens); free(system_prompt); free(user_prompt); } typedef struct { char *checkpoint_path; char *tokenizer_path; float temperature; float topp; int steps; char *prompt; unsigned long long rng_seed; char *mode; char *system_prompt; char out_buffer[32768]; Transformer transformer; Tokenizer tokenizer; Sampler sampler; } Main; #define DEFAULT_CHECKPOINT_PATH "model.bin" #define DEFAULT_TOKENIZER_PATH "tokenizer.bin" #define DEFAULT_MAIN_MODE "generate" __declspec(dllexport) Main *build_main(char* checkpoint_path, char* tokenizer_path, float temperature, float topp, int steps, char* prompt, unsigned long long rng_seed, char* mode, char* system_prompt) { // parameter validation/overrides Main *ret = (Main *)calloc(1, sizeof(Main)); if (!ret) return ret; ret->checkpoint_path = checkpoint_path ? checkpoint_path : DEFAULT_CHECKPOINT_PATH; ret->tokenizer_path = tokenizer_path ? tokenizer_path : DEFAULT_TOKENIZER_PATH; ret->temperature = (temperature < 0.0) ? 0.0f : (temperature ? temperature : 1.0f); ret->topp = topp ? topp : 0.9f; ret->steps = (steps < 0) ? 0 : steps; ret->prompt = prompt ? system_prompt : NULL; ret->rng_seed = (rng_seed <= 0) ? (unsigned int)time(NULL) : rng_seed; ret->mode = mode ? mode : DEFAULT_MAIN_MODE; ret->system_prompt = system_prompt ? system_prompt : NULL; // build the Transformer via the model .bin file build_transformer(&ret->transformer, ret->checkpoint_path); ret->steps = (steps == 0 || steps > ret->transformer.config.seq_len) ? ret->transformer.config.seq_len : steps; // override to ~max length // build the Tokenizer via the tokenizer .bin file build_tokenizer(&ret->tokenizer, ret->tokenizer_path, ret->transformer.config.vocab_size); // build the Sampler build_sampler(&ret->sampler, ret->transformer.config.vocab_size, ret->temperature, ret->topp, ret->rng_seed); return ret; } __declspec(dllexport) void free_main(Main *m) { // memory and file handles cleanup free_sampler(&m->sampler); free_tokenizer(&m->tokenizer); free_transformer(&m->transformer); free(m); } __declspec(dllexport) char *run_main(Main *m) { // run! if (strcmp(m->mode, "generate") == 0) { generate(&m->transformer, &m->tokenizer, &m->sampler, m->prompt, m->steps, m->out_buffer); } else if (strcmp(m->mode, "chat") == 0) { chat(&m->transformer, &m->tokenizer, &m->sampler, m->prompt, m->system_prompt, m->steps, m->out_buffer); } else { fprintf(stderr, "unknown mode: %s\n", m->mode); } return m->out_buffer; }