import json import os import shutil import time from pathlib import Path from typing import List import numpy as np import torch from huggingface_hub import hf_hub_download from torch import nn from torch.nn import functional as F from transformers import BertPreTrainedModel, BertModel from transformers.modeling_outputs import MaskedLMOutput, BaseModelOutputWithPooling from transformers.models.bert.modeling_bert import BertEncoder, BertPooler, BertLMPredictionHead cache_path = Path(os.path.abspath(__file__)).parent def download_file(filename: str, path: Path): if os.path.exists(cache_path / filename): return if os.path.exists(path / filename): shutil.copyfile(path / filename, cache_path / filename) return hf_hub_download( "iioSnail/ChineseBERT-for-csc", filename, local_dir=cache_path ) time.sleep(0.2) class ChineseBertForCSC(BertPreTrainedModel): def __init__(self, config): super(ChineseBertForCSC, self).__init__(config) self.model = Dynamic_GlyceBertForMultiTask(config) self.tokenizer = None def forward(self, **kwargs): return self.model(**kwargs) def set_tokenizer(self, tokenizer): self.tokenizer = tokenizer def _predict(self, sentence): if self.tokenizer is None: return "Please init tokenizer by `set_tokenizer(tokenizer)` before predict." inputs = self.tokenizer([sentence], return_tensors='pt') output_hidden = self.model(**inputs).logits return self.tokenizer.convert_ids_to_tokens(output_hidden.argmax(-1)[0, 1:-1]) def predict(self, sentence, window=1): _src_tokens = list(sentence) src_tokens = list(sentence) pred_tokens = self._predict(sentence) for _ in range(window): record_index = [] for i, (a, b) in enumerate(zip(src_tokens, pred_tokens)): if a != b: record_index.append(i) src_tokens = pred_tokens pred_tokens = self._predict(''.join(pred_tokens)) for i, (a, b) in enumerate(zip(src_tokens, pred_tokens)): # 若这个token被修改了,且在窗口范围内,则什么都不做。 if a != b and any([abs(i - x) <= 1 for x in record_index]): pass else: pred_tokens[i] = src_tokens[i] return ''.join(pred_tokens) #################################ChineseBERT Source Code############################################## class Dynamic_GlyceBertForMultiTask(BertPreTrainedModel): def __init__(self, config): super(Dynamic_GlyceBertForMultiTask, self).__init__(config) self.bert = GlyceBertModel(config) self.cls = MultiTaskHeads(config) def get_output_embeddings(self): return self.cls.predictions.decoder def forward( self, input_ids=None, pinyin_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs ): assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}." return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs_x = self.bert( input_ids, pinyin_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) encoded_x = outputs_x[0] prediction_scores = self.cls(encoded_x) return MaskedLMOutput( logits=prediction_scores, hidden_states=outputs_x.hidden_states, attentions=outputs_x.attentions, ) class GlyceBertModel(BertModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the models. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the models at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') models = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = models(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(GlyceBertModel, self).__init__(config) self.config = config self.embeddings = FusionBertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.init_weights() def forward( self, input_ids=None, pinyin_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the models is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the models is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, pinyin_ids=pinyin_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def forward_with_embedding( self, input_ids=None, pinyin_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, embedding=None ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the models is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the models is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) assert embedding is not None embedding_output = embedding encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class MultiTaskHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class FusionBertEmbeddings(nn.Module): """ Construct the embeddings from word, position, glyph, pinyin and token_type embeddings. """ def __init__(self, config): super(FusionBertEmbeddings, self).__init__() self.path = Path(config._name_or_path) config_path = cache_path / 'config' if not os.path.exists(config_path): os.makedirs(config_path) font_files = [] download_file("config/STFANGSO.TTF24.npy", self.path) download_file("config/STXINGKA.TTF24.npy", self.path) download_file("config/方正古隶繁体.ttf24.npy", self.path) for file in os.listdir(config_path): if file.endswith(".npy"): font_files.append(config_path / file) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.pinyin_embeddings = PinyinEmbedding(embedding_size=128, pinyin_out_dim=config.hidden_size, config=config) self.glyph_embeddings = GlyphEmbedding(font_npy_files=font_files) # self.LayerNorm is not snake-cased to stick with TensorFlow models variable name and be able to load # any TensorFlow checkpoint file self.glyph_map = nn.Linear(1728, config.hidden_size) self.map_fc = nn.Linear(config.hidden_size * 3, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) def forward(self, input_ids=None, pinyin_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # get char embedding, pinyin embedding and glyph embedding word_embeddings = inputs_embeds # [bs,l,hidden_size] pinyin_embeddings = self.pinyin_embeddings(pinyin_ids) # [bs,l,hidden_size] glyph_embeddings = self.glyph_map(self.glyph_embeddings(input_ids)) # [bs,l,hidden_size] # fusion layer concat_embeddings = torch.cat((word_embeddings, pinyin_embeddings, glyph_embeddings), 2) inputs_embeds = self.map_fc(concat_embeddings) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class PinyinEmbedding(nn.Module): def __init__(self, embedding_size: int, pinyin_out_dim: int, config): """ Pinyin Embedding Module Args: embedding_size: the size of each embedding vector pinyin_out_dim: kernel number of conv """ super(PinyinEmbedding, self).__init__() download_file("config/pinyin_map.json", Path(config._name_or_path)) with open(cache_path / 'config' / 'pinyin_map.json') as fin: pinyin_dict = json.load(fin) self.pinyin_out_dim = pinyin_out_dim self.embedding = nn.Embedding(len(pinyin_dict['idx2char']), embedding_size) self.conv = nn.Conv1d(in_channels=embedding_size, out_channels=self.pinyin_out_dim, kernel_size=2, stride=1, padding=0) def forward(self, pinyin_ids): """ Args: pinyin_ids: (bs*sentence_length*pinyin_locs) Returns: pinyin_embed: (bs,sentence_length,pinyin_out_dim) """ # input pinyin ids for 1-D conv embed = self.embedding(pinyin_ids) # [bs,sentence_length,pinyin_locs,embed_size] bs, sentence_length, pinyin_locs, embed_size = embed.shape view_embed = embed.view(-1, pinyin_locs, embed_size) # [(bs*sentence_length),pinyin_locs,embed_size] input_embed = view_embed.permute(0, 2, 1) # [(bs*sentence_length), embed_size, pinyin_locs] # conv + max_pooling pinyin_conv = self.conv(input_embed) # [(bs*sentence_length),pinyin_out_dim,H] pinyin_embed = F.max_pool1d(pinyin_conv, pinyin_conv.shape[-1]) # [(bs*sentence_length),pinyin_out_dim,1] return pinyin_embed.view(bs, sentence_length, self.pinyin_out_dim) # [bs,sentence_length,pinyin_out_dim] class GlyphEmbedding(nn.Module): """Glyph2Image Embedding""" def __init__(self, font_npy_files: List[str]): super(GlyphEmbedding, self).__init__() font_arrays = [ np.load(np_file).astype(np.float32) for np_file in font_npy_files ] self.vocab_size = font_arrays[0].shape[0] self.font_num = len(font_arrays) self.font_size = font_arrays[0].shape[-1] # N, C, H, W font_array = np.stack(font_arrays, axis=1) self.embedding = nn.Embedding( num_embeddings=self.vocab_size, embedding_dim=self.font_size ** 2 * self.font_num, _weight=torch.from_numpy(font_array.reshape([self.vocab_size, -1])) ) def forward(self, input_ids): """ get glyph images for batch inputs Args: input_ids: [batch, sentence_length] Returns: images: [batch, sentence_length, self.font_num*self.font_size*self.font_size] """ # return self.embedding(input_ids).view([-1, self.font_num, self.font_size, self.font_size]) return self.embedding(input_ids)