File size: 19,613 Bytes
0b057e2 eb37430 0b057e2 787b7b5 0b057e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import copy
import math
from typing import Optional, Any, Tuple
import torch
from torch import Tensor
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.modules.activation import MultiheadAttention
from torch.nn.modules.container import ModuleList
from torch.nn.init import xavier_uniform_
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear
from torch.nn.modules.normalization import LayerNorm
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers import PreTrainedModel
from transformers import BertForMaskedLM, BertForSequenceClassification
from .configuration_hier import HierBertConfig
import warnings
# Turn off all warnings
warnings.filterwarnings("ignore")
# Define masking
def gen_encoder_ut_mask(src_seq, input_mask, utt_loc):
def _gen_mask_hierarchical(A, src_pad_mask):
# A: (bs, 100, 100); 100 is max_len*2 same as input_ids
return ~(2 * A == (A + A.transpose(1, 2))).bool()
enc_mask_utt = _gen_mask_hierarchical(utt_loc.unsqueeze(1).expand(-1, src_seq.shape[1], -1), input_mask)
return enc_mask_utt
def _get_pe_inputs(src_seq, input_mask, utt_loc):
pe_utt_loc = torch.zeros(utt_loc.shape, device=utt_loc.device)
for i in range(1, utt_loc.shape[1]): # time
_logic = (utt_loc[:, i] == utt_loc[:, i - 1]).float()
pe_utt_loc[:, i] = pe_utt_loc[:, i - 1] + _logic - (1 - _logic) * pe_utt_loc[:, i - 1]
return pe_utt_loc
def _CLS_masks(src_seq, input_mask, utt_loc):
# HT-Encoder
pe_utt_loc = _get_pe_inputs(src_seq, input_mask, utt_loc)
# UT-MASK
enc_mask_utt = gen_encoder_ut_mask(src_seq, input_mask, utt_loc)
# CT-MASK
enc_mask_ct = ((pe_utt_loc + input_mask) != 0).unsqueeze(1).expand(-1, src_seq.shape[1], -1) # HIER-CLS style
return pe_utt_loc, enc_mask_utt, enc_mask_ct
def get_hier_encoder_mask(src_seq, input_mask, utt_loc, type: str):
# Padding correction
# No token other than padding should attend to padding
# But padding needs to attend to padding tokens for numerical stability reasons
utt_loc = utt_loc - 2 * input_mask * utt_loc
# CT-Mask type
assert type in ["hier", "cls", "full"]
if type == "hier": # HIER: Context through final utterance
raise Exception("Not used for BERT")
elif type == "cls": # HIER-CLS: Context through cls tokens
return _CLS_masks(src_seq, input_mask, utt_loc)
elif type == "full": # Ut-mask only, CT-mask: Full attention
raise Exception("Not used for BERT")
return None
def _get_clones(module, N):
return ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
class PositionalEmbedding(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.max_len = config.max_position_embeddings
self.d_model = config.hidden_size
# Compute the positional encodings once in log space.
pe = torch.zeros(self.max_len, self.d_model).float()
pe.require_grad = False
position = torch.arange(0, self.max_len).float().unsqueeze(1)
div_term = (torch.arange(0, self.d_model, 2).float() * -(math.log(10000.0) / self.d_model)).exp()
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
# Shape of X : [N x L x d] or [N x L]
return self.pe[:, :x.size(1)]
def forward_by_index(self, loc):
return self.pe.expand(loc.shape[0], -1, -1).gather(1, loc.unsqueeze(2).expand(-1, -1, self.pe.shape[2]).long())
class TransformerEncoderLayer(Module):
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of intermediate layer, relu or gelu (default=relu).
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
"""
def __init__(self, config):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(config.hidden_size,
config.num_attention_heads,
dropout=config.attention_probs_dropout_prob)
# Implementation of Feedforward model
self.linear1 = Linear(config.hidden_size, config.intermediate_size)
self.dropout = Dropout(config.hidden_dropout_prob)
self.linear2 = Linear(config.intermediate_size, config.hidden_size)
self.norm_first = config.norm_first
self.norm1 = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.norm2 = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout1 = Dropout(config.hidden_dropout_prob)
self.dropout2 = Dropout(config.hidden_dropout_prob)
self.activation = _get_activation_fn(config.hidden_act)
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = F.relu
super(TransformerEncoderLayer, self).__setstate__(state)
def forward(self, src: Tensor, src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None) -> tuple[Tensor, Optional[Tensor]]:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
# Extend mask
# src_mask = src_mask.repeat(self.self_attn.num_heads, 1, 1)
# PreLayerNorm
if self.norm_first:
src = self.norm1(src)
src_attn = self.self_attn(src, src, src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask, average_attn_weights=False) # [0]
src = src + self.dropout1(src_attn[0])
src = self.norm2(src)
src_ffn = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src_ffn)
else:
src_attn = self.self_attn(src, src, src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask, average_attn_weights=False) # [0]
src = src + self.dropout1(src_attn[0])
src = self.norm1(src)
src_ffn = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src_ffn)
src = self.norm2(src)
return src, src_attn[1]
class HierBert(Module):
r"""A transformer model. User is able to modify the attributes as needed. The architecture
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805)
model with corresponding parameters.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu).
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
Examples::
# >>> transformer_model = HIERTransformer(nhead=16, num_encoder_layers=12)
# >>> src = torch.rand((10, 32, 512))
# >>> token_type_ids/utt_indices = torch.tensor([0, 0, 1, 1, 1, 2, 2, 3, 3, 3]) Represent each utterance to encode
# >>> out = transformer_model(src)
Note: A full example to apply nn.Transformer module for the word language model is available in
# https://github.com/pytorch/examples/tree/master/word_language_model
"""
def __init__(self, config) -> None:
super(HierBert, self).__init__()
self.config = config
# Word Emb
self.word_embeddings = torch.nn.Embedding(config.vocab_size,
config.hidden_size,
padding_idx=config.pad_token_id)
# Pos Emb
self.post_word_emb = PositionalEmbedding(config)
# Encoder
self.enc_layers = _get_clones(TransformerEncoderLayer(config=config),
config.num_hidden_layers)
self.norm_e = LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self._reset_parameters()
self.init_weights()
def init_weights(self) -> None:
initrange = 0.1
self.word_embeddings.weight.data.uniform_(-initrange, initrange)
# TODO: fix return dict
def forward(self, input_ids: Tensor,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
ct_mask_type: str = "cls",
output_attentions: Optional[bool] = True,
memory_key_padding_mask: Optional[Tensor] = None,
**kwargs
):
r"""Take in and process masked source/target sequences.
Args:
input_ids/src: the sequence to the encoder (required).
src_mask: the additive mask for the src sequence (optional).
memory_mask: the additive mask for the encoder output (optional).
attention_mask/src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).
Shape:
- input_ids/src: :math:`(S, N, E)`.
- src_mask: :math:`(S, S)`.
- memory_mask: :math:`(T, S)`.
- not(attention_mask)/src_key_padding_mask: :math:`(N, S)`.
- token_type_ids/utt_indices: :math:`(N, S)`.
- memory_key_padding_mask: :math:`(N, S)`.
Note: [src/memory]_mask ensures that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
[src/memory]_key_padding_mask provides specified elements in the key to be ignored by
the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero
positions will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- output: :math:`(T, N, E)`.
Note: Due to the multi-head attention architecture in the transformer model,
the output sequence length of a transformer is same as the input sequence
(i.e. target) length of the decode.
where S is the source sequence length, T is the target sequence length, N is the
batch size, E is the feature number
Examples:
# >>> output = transformer_model(src, src_mask=src_mask)
"""
all_self_attentions = () if output_attentions else None
# print(input_ids.shape)
if attention_mask is None:
# Convert input_ids to attention mask
attention_mask = self.create_padding_mask(input_ids)
attention_mask = torch.tensor(attention_mask, dtype=torch.long)
if token_type_ids is None:
# Convert input_ids to token type IDs
token_type_ids = self.convert_input_ids_to_token_type_ids(input_ids)
# print('token type ids model', token_type_ids)
src_key_padding_mask = torch.logical_not(attention_mask)
utt_indices = token_type_ids
pe_utt_loc, enc_mask_utt, enc_mask_ct = get_hier_encoder_mask(input_ids,
src_key_padding_mask,
utt_indices,
type=ct_mask_type)
# memory = self.encoder(input_ids, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
# Encoding
# memory = input_ids
enc_inp = self.word_embeddings(input_ids.transpose(0, 1)) + self.post_word_emb.forward_by_index(
pe_utt_loc).transpose(0, 1)
# Basic config
# for i, layer in enumerate(self.enc_layers):
# if i == self.config.num_hidden_layers // 2:
# # Positional Embedding for Context Encoder
# enc_inp = enc_inp + self.post_word_emb(enc_inp.transpose(0, 1)).transpose(0, 1)
# if i < self.config.num_hidden_layers // 2:
# enc_inp = layer(enc_inp,
# src_key_padding_mask=src_key_padding_mask,
# src_mask=enc_mask_utt.float())
# else:
# enc_inp = layer(enc_inp,
# src_key_padding_mask=src_key_padding_mask,
# src_mask=enc_mask_ct)
# TODO: add layers configurations support and variations setup
# interleaved config (I3)
for i, layer in enumerate(self.enc_layers):
if i % (2 + 1) < 2:
# Shared encoders or Segment-wise encoders
# print("SWE")
enc_inp, att_w = layer(enc_inp,
src_mask=enc_mask_utt.repeat(self.config.num_attention_heads, 1, 1))
else:
# Positional Embedding for Context Encoder if few connected CSE use it before
enc_inp = enc_inp + self.post_word_emb(enc_inp.transpose(0, 1)).transpose(0, 1)
# Context encoder or Cross-segment encoders
# print("CSE")
enc_inp, att_w = layer(enc_inp,
src_mask=enc_mask_ct.repeat(self.config.num_attention_heads, 1, 1))
if output_attentions:
all_self_attentions = all_self_attentions + (att_w,)
if self.norm_e is not None:
enc_inp = self.norm_e(enc_inp)
encoder_output = enc_inp.transpose(0, 1)
hidden_states = encoder_output
pooled_output = hidden_states[:, 0, :]
outputs = (hidden_states, pooled_output, all_self_attentions)
return outputs
def create_padding_mask(self, token_ids):
padding_mask = torch.ne(token_ids, self.config.pad_token_id).int()
return padding_mask
def generate_square_subsequent_mask(self, sz: int) -> Tensor:
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
"""
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def _reset_parameters(self):
r"""Initiate parameters in the transformer model."""
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
def convert_input_ids_to_token_type_ids(self, input_ids):
token_type_ids = torch.zeros_like(input_ids)
for row, row_tensor in enumerate(input_ids):
sep_indices = torch.nonzero(row_tensor == self.config.sep_token_id)
prev_index = -1
for type_id, index in enumerate(sep_indices):
token_type_ids[row, prev_index + 1:index + 1] = type_id
prev_index = index
return token_type_ids
class HierBertModel(PreTrainedModel):
config_class = HierBertConfig
base_model_prefix = "bert"
def __init__(self, config):
super().__init__(config)
self.model = HierBert(config)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
):
outputs = self.model(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict)
if not return_dict:
return outputs
return BaseModelOutputWithPooling(
last_hidden_state=outputs[0],
pooler_output=outputs[1],
attentions=outputs[2])
def get_input_embeddings(self):
return self.model.word_embeddings
def set_input_embeddings(self, value):
self.model.word_embeddings = value
class HierBertForMaskedLM(BertForMaskedLM):
config_class = HierBertConfig
def __init__(self, config):
super().__init__(config)
self.bert = HierBertModel(config)
class HierBertForSequenceClassification(BertForSequenceClassification):
config_class = HierBertConfig
def __init__(self, config):
super().__init__(config)
self.bert = HierBertModel(config)
|