--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6443 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9572 | 1.0 | 129 | 1.7251 | 0.52 | | 1.1852 | 2.0 | 258 | 1.1422 | 0.71 | | 1.1112 | 3.0 | 387 | 0.9251 | 0.72 | | 0.5134 | 4.0 | 516 | 0.7149 | 0.79 | | 0.3248 | 5.0 | 645 | 0.7624 | 0.76 | | 0.332 | 6.0 | 774 | 0.7291 | 0.78 | | 0.1595 | 7.0 | 903 | 0.6012 | 0.81 | | 0.1878 | 8.0 | 1032 | 0.5808 | 0.85 | | 0.0617 | 9.0 | 1161 | 0.6518 | 0.82 | | 0.0323 | 10.0 | 1290 | 0.6443 | 0.81 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3