--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7321 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0183 | 1.0 | 65 | 1.9568 | 0.42 | | 1.7065 | 2.0 | 130 | 1.4569 | 0.57 | | 1.2068 | 3.0 | 195 | 1.1678 | 0.72 | | 0.9065 | 4.0 | 260 | 0.9721 | 0.74 | | 0.8115 | 5.0 | 325 | 0.8377 | 0.8 | | 0.7854 | 6.0 | 390 | 0.7654 | 0.84 | | 0.4885 | 7.0 | 455 | 0.7544 | 0.8 | | 0.5956 | 8.0 | 520 | 0.7321 | 0.81 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3