--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:110819 - loss:CosineSimilarityLoss base_model: intfloat/multilingual-e5-base widget: - source_sentence: UR-144 pentanoate sentences: - Etodolac - Decenoate - Glucose^6th specimen post XXX challenge - source_sentence: Índice de captación de triyodotironina / triyodotironina sentences: - Cells.CD3+CD45+/100 cells - Triiodothyronine/Triiodothyronine uptake index - Prolactin^2nd specimen post XXX challenge - source_sentence: Aldosteron in Serum oder Plasma sentences: - Ethyl benzene - Aldosterone - Methoxychlor - source_sentence: Glucose 240 min (oGTT) sentences: - 17-Hydroxyprogesterone^30M post 250 ug corticotropin IM - Hexadecenoate - Glucose^4H post 75 g glucose PO - source_sentence: Tiglylcarnitine+methylcrotonylcarnitine (C5:1) sentences: - Lymphocyte proliferation.OKT3 stimulation - Adenosine monophosphate.cyclic - Adenosine monophosphate.cyclic pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on intfloat/multilingual-e5-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("iddqd21/fine-tuned-e5-semantic-similarity_v2") # Run inference sentences = [ 'Tiglylcarnitine+methylcrotonylcarnitine (C5:1)', 'Adenosine monophosphate.cyclic', 'Adenosine monophosphate.cyclic', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 110,819 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:---------------------------|:---------------------------|:-----------------| | Methocarbamol | Methocarbamol | 1.0 | | Busulfan | Psilocin | 0.0 | | Zirconium | Strychnine | 0.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 5 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:------:|:-----:|:-------------:| | 0.0722 | 500 | 0.1227 | | 0.1444 | 1000 | 0.0772 | | 0.2165 | 1500 | 0.0726 | | 0.2887 | 2000 | 0.0668 | | 0.3609 | 2500 | 0.0617 | | 0.4331 | 3000 | 0.0615 | | 0.5053 | 3500 | 0.056 | | 0.5775 | 4000 | 0.0562 | | 0.6496 | 4500 | 0.0596 | | 0.7218 | 5000 | 0.0576 | | 0.7940 | 5500 | 0.0531 | | 0.8662 | 6000 | 0.0524 | | 0.9384 | 6500 | 0.0544 | | 1.0105 | 7000 | 0.0502 | | 1.0827 | 7500 | 0.0411 | | 1.1549 | 8000 | 0.0417 | | 1.2271 | 8500 | 0.0451 | | 1.2993 | 9000 | 0.041 | | 1.3714 | 9500 | 0.0407 | | 1.4436 | 10000 | 0.0412 | | 1.5158 | 10500 | 0.0403 | | 1.5880 | 11000 | 0.0407 | | 1.6602 | 11500 | 0.0423 | | 1.7324 | 12000 | 0.0385 | | 1.8045 | 12500 | 0.039 | | 1.8767 | 13000 | 0.0392 | | 1.9489 | 13500 | 0.0366 | | 2.0211 | 14000 | 0.0344 | | 2.0933 | 14500 | 0.0312 | | 2.1654 | 15000 | 0.0321 | | 2.2376 | 15500 | 0.0311 | | 2.3098 | 16000 | 0.0305 | | 2.3820 | 16500 | 0.032 | | 2.4542 | 17000 | 0.031 | | 2.5263 | 17500 | 0.0284 | | 2.5985 | 18000 | 0.0291 | | 2.6707 | 18500 | 0.0318 | | 2.7429 | 19000 | 0.0308 | | 2.8151 | 19500 | 0.0292 | | 2.8873 | 20000 | 0.0297 | | 2.9594 | 20500 | 0.03 | | 3.0316 | 21000 | 0.0268 | | 3.1038 | 21500 | 0.0232 | | 3.1760 | 22000 | 0.0239 | | 3.2482 | 22500 | 0.0256 | | 3.3203 | 23000 | 0.0248 | | 3.3925 | 23500 | 0.0261 | | 3.4647 | 24000 | 0.0244 | | 3.5369 | 24500 | 0.0248 | | 3.6091 | 25000 | 0.0231 | | 3.6812 | 25500 | 0.0238 | | 3.7534 | 26000 | 0.0242 | | 3.8256 | 26500 | 0.0234 | | 3.8978 | 27000 | 0.0249 | | 3.9700 | 27500 | 0.0253 | | 4.0422 | 28000 | 0.0218 | | 4.1143 | 28500 | 0.0208 | | 4.1865 | 29000 | 0.0201 | | 4.2587 | 29500 | 0.0208 | | 4.3309 | 30000 | 0.0205 | | 4.4031 | 30500 | 0.0217 | | 4.4752 | 31000 | 0.0193 | | 4.5474 | 31500 | 0.0204 | | 4.6196 | 32000 | 0.0202 | | 4.6918 | 32500 | 0.0199 | | 4.7640 | 33000 | 0.0205 | | 4.8361 | 33500 | 0.0211 | | 4.9083 | 34000 | 0.0213 | | 4.9805 | 34500 | 0.02 | ### Framework Versions - Python: 3.9.20 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+rocm6.2 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```