--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:78879 - loss:CosineSimilarityLoss base_model: intfloat/multilingual-e5-base widget: - source_sentence: Somatotropin Ab sentences: - Desethylamiodarone - Glucose^7H post XXX challenge - Somatotropin Ab - source_sentence: Erythrocytes.fetal/1000 erythrocytes sentences: - levoFLOXacin - Pathologist interpretation - Pepsinogen I - source_sentence: Aggregazione piastrinica.arachidonato indotta sentences: - Epidermal growth factor - Bilirubin.glucuronidated/Bilirubin.total - Platelet aggregation.arachidonate induced - source_sentence: Parathormoon.intact^5 min na uitsnijding in serum of plasma sentences: - Fatty acids.very long chain - Estradiol^4th specimen post XXX challenge - Parathyrin.intact^5M post excision - source_sentence: Karboksühemoglobiin/hemoglobiin.üld sentences: - Ammonia - Carboxyhemoglobin/Hemoglobin.total - Procainamide+N-acetylprocainamide pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on intfloat/multilingual-e5-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("iddqd21/fine-tuned-e5-semantic-similarity") # Run inference sentences = [ 'Karboksühemoglobiin/hemoglobiin.üld', 'Carboxyhemoglobin/Hemoglobin.total', 'Procainamide+N-acetylprocainamide', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 78,879 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:--------------------------------------------------|:-------------------------------------------------|:-----------------| | Rakud.CD3+HLA-DR+/100 raku kohta | Cells.CD3+HLA-DR+/100 cells | 1.0 | | Zellen.FMC7/100 Zellen | Cells.FMC7/100 cells | 1.0 | | Apolipoprotéine AI/apolipoprotéine B | Apolipoprotein A-I/Apolipoprotein B | 1.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 10 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:------:|:-----:|:-------------:| | 0.1014 | 500 | 0.0633 | | 0.2028 | 1000 | 0.0332 | | 0.3043 | 1500 | 0.0296 | | 0.4057 | 2000 | 0.0266 | | 0.5071 | 2500 | 0.024 | | 0.6085 | 3000 | 0.0239 | | 0.7099 | 3500 | 0.0216 | | 0.8114 | 4000 | 0.0205 | | 0.9128 | 4500 | 0.0187 | | 1.0142 | 5000 | 0.0185 | | 1.1156 | 5500 | 0.0149 | | 1.2170 | 6000 | 0.015 | | 1.3185 | 6500 | 0.0142 | | 1.4199 | 7000 | 0.0152 | | 1.5213 | 7500 | 0.0138 | | 1.6227 | 8000 | 0.0131 | | 1.7241 | 8500 | 0.014 | | 1.8256 | 9000 | 0.0133 | | 1.9270 | 9500 | 0.0125 | | 2.0284 | 10000 | 0.0128 | | 2.1298 | 10500 | 0.0093 | | 2.2312 | 11000 | 0.0091 | | 2.3327 | 11500 | 0.0097 | | 2.4341 | 12000 | 0.0096 | | 2.5355 | 12500 | 0.0097 | | 2.6369 | 13000 | 0.0093 | | 2.7383 | 13500 | 0.0099 | | 2.8398 | 14000 | 0.0104 | | 2.9412 | 14500 | 0.009 | | 3.0426 | 15000 | 0.0084 | | 3.1440 | 15500 | 0.0065 | | 3.2454 | 16000 | 0.0062 | | 3.3469 | 16500 | 0.0062 | | 3.4483 | 17000 | 0.0068 | | 3.5497 | 17500 | 0.0076 | | 3.6511 | 18000 | 0.0078 | | 3.7525 | 18500 | 0.0068 | | 3.8540 | 19000 | 0.008 | | 3.9554 | 19500 | 0.0076 | | 4.0568 | 20000 | 0.0057 | | 4.1582 | 20500 | 0.0054 | | 4.2596 | 21000 | 0.0052 | | 4.3611 | 21500 | 0.0052 | | 4.4625 | 22000 | 0.0056 | | 4.5639 | 22500 | 0.0055 | | 4.6653 | 23000 | 0.0057 | | 4.7667 | 23500 | 0.006 | | 4.8682 | 24000 | 0.0054 | | 4.9696 | 24500 | 0.0052 | | 5.0710 | 25000 | 0.0045 | | 5.1724 | 25500 | 0.0039 | | 5.2738 | 26000 | 0.0043 | | 5.3753 | 26500 | 0.004 | | 5.4767 | 27000 | 0.0044 | | 5.5781 | 27500 | 0.0045 | | 5.6795 | 28000 | 0.0039 | | 5.7809 | 28500 | 0.0043 | | 5.8824 | 29000 | 0.0047 | | 5.9838 | 29500 | 0.0049 | | 6.0852 | 30000 | 0.003 | | 6.1866 | 30500 | 0.0034 | | 6.2880 | 31000 | 0.003 | | 6.3895 | 31500 | 0.0031 | | 6.4909 | 32000 | 0.0033 | | 6.5923 | 32500 | 0.0035 | | 6.6937 | 33000 | 0.0037 | | 6.7951 | 33500 | 0.0039 | | 6.8966 | 34000 | 0.004 | | 6.9980 | 34500 | 0.003 | | 7.0994 | 35000 | 0.0024 | | 7.2008 | 35500 | 0.0026 | | 7.3022 | 36000 | 0.0029 | | 7.4037 | 36500 | 0.0029 | | 7.5051 | 37000 | 0.0025 | | 7.6065 | 37500 | 0.0026 | | 7.7079 | 38000 | 0.0032 | | 7.8093 | 38500 | 0.0032 | | 7.9108 | 39000 | 0.0029 | | 8.0122 | 39500 | 0.0028 | | 8.1136 | 40000 | 0.0024 | | 8.2150 | 40500 | 0.0021 | | 8.3164 | 41000 | 0.0022 | | 8.4178 | 41500 | 0.0022 | | 8.5193 | 42000 | 0.0024 | | 8.6207 | 42500 | 0.0025 | | 8.7221 | 43000 | 0.0023 | | 8.8235 | 43500 | 0.0021 | | 8.9249 | 44000 | 0.0026 | | 9.0264 | 44500 | 0.0025 | | 9.1278 | 45000 | 0.0021 | | 9.2292 | 45500 | 0.0017 | | 9.3306 | 46000 | 0.0022 | | 9.4320 | 46500 | 0.002 | | 9.5335 | 47000 | 0.0021 | | 9.6349 | 47500 | 0.0019 | | 9.7363 | 48000 | 0.0021 | | 9.8377 | 48500 | 0.002 | | 9.9391 | 49000 | 0.0021 | ### Framework Versions - Python: 3.9.20 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+rocm6.2 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```