Update README.md
Browse files
README.md
CHANGED
@@ -56,41 +56,60 @@ To run the inference pipeline for classifying prompts, follow these steps:
|
|
56 |
# Load model directly
|
57 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
58 |
|
59 |
-
|
60 |
model = AutoModelForSequenceClassification.from_pretrained("idanpers/JailBreakModel")
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
use:
|
64 |
-
# Function to classify a single prompt using the trained model in Trainer
|
65 |
def classify_prompt(prompt):
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
|
87 |
-
|
88 |
prompt = input("Enter a prompt for classification: ")
|
89 |
result = classify_prompt(prompt)
|
90 |
|
91 |
-
|
92 |
if "error" in result:
|
93 |
-
|
94 |
else:
|
95 |
-
|
96 |
-
|
|
|
56 |
# Load model directly
|
57 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
58 |
|
59 |
+
Tokenizer = AutoTokenizer.from_pretrained("idanpers/JailBreakModel")
|
60 |
model = AutoModelForSequenceClassification.from_pretrained("idanpers/JailBreakModel")
|
61 |
|
62 |
|
63 |
+
training_args = TrainingArguments(
|
64 |
+
output_dir="./results",
|
65 |
+
per_device_train_batch_size=16,
|
66 |
+
per_device_eval_batch_size=16,
|
67 |
+
report_to="none", # Disable W&B
|
68 |
+
save_safetensors=False,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# Create Trainer instance
|
75 |
+
trainer = Trainer(
|
76 |
+
model=model,
|
77 |
+
args=training_args,
|
78 |
+
tokenizer=tokenizer,
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
use:
|
|
|
84 |
def classify_prompt(prompt):
|
85 |
+
# Error handling for empty input
|
86 |
+
if not isinstance(prompt, str) or prompt.strip() == "":
|
87 |
+
return {"error": "Invalid input. Please provide a non-empty text prompt."}
|
88 |
|
89 |
+
# Tokenize the input prompt and convert to dataset format expected by trainer.predict
|
90 |
+
inputs = Tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
91 |
+
dataset = Dataset.from_dict({"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"]})
|
92 |
|
93 |
+
# Use trainer.predict to classify
|
94 |
+
prediction_output = trainer.predict(dataset)
|
95 |
|
96 |
+
# Get the softmax probabilities for confidence scores
|
97 |
+
probs = torch.softmax(torch.tensor(prediction_output.predictions), dim=1).cpu().numpy()
|
98 |
+
confidence = np.max(probs)
|
99 |
+
pred_label = np.argmax(probs, axis=1)[0]
|
100 |
|
101 |
+
# Map prediction to label
|
102 |
+
label = "PROMPT_INJECTION" if pred_label == 1 else "BENIGN"
|
103 |
|
104 |
+
return {"label": label, "confidence": confidence}
|
105 |
|
106 |
+
#Accept input from the user and classify it
|
107 |
prompt = input("Enter a prompt for classification: ")
|
108 |
result = classify_prompt(prompt)
|
109 |
|
110 |
+
#Check for errors before accessing the classification result
|
111 |
if "error" in result:
|
112 |
+
print(f"Error: {result['error']}")
|
113 |
else:
|
114 |
+
print(f"Classification Result: {result['label']}")
|
115 |
+
print(f"Confidence Score: {result['confidence']:.2f}")
|