{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000018F40BDCB40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698049488154349200, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWV+zIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAGAAAAAAAANXtlvwjiK78A5Qw+9cxwPweQdL/66Aw+fUpRPzdgE7/M5ww+3QRmvmHKHsCNuQs+zP4zvyv2Sz/O5gw+PWdkPhfYBr/D5ww+9JU/vkhIKT/D5ww+ElA9P04+I77z6Aw+SJ1sP/zDL8A3JKU9pNGAPz0+b74wyAw+HR1xP5q3xD4b6Aw+b4zpvqosar75DQ0+k8ryvtOgPz7O5ww+4t+ev58OUr2TLX0+p3EnwKMYdb7T5gw+fSUhv3gfRL+z5ww+O3dYv7vm7r+C6Aw+uzNhPkd7Wr+A6Aw+k5jXvs9vkb6e6Aw+9JUEv57k1D4A5Qw+vCN3P5pY+b726Aw+xYBiP9RBLb7O5gw+ZVIHPAuajT1C6Aw+VmclvxkIjD1mCiA+fRq0vh8hNj/O5gw+bWfIPtymNL/D5ww+vNslPj+D1b7D5ww+A5mGP1jqmr3D5ww+pPqlPrdxO74A5Qw+hUPKPhZO+D3O5gw+Thsyvn0WLT+z5ww+SghFv/7HZL8S4ww+sZoiP7QhjT8b6Aw+CIAAP0dG7D745ww+vY2CPyzyaz/O5gw+dEizPjiVbD8A5Qw+PmcGPwnjAz/O5gw+VsLwvWRYFL7D5ww+G3uDPgDZJD8A5Qw+1JiKvvCqDr/V6Aw+GAktP6ogwr7D5ww+iZSMvrGHob7O5gw+eS6KvsxeBj6h6Aw+QR6avg0Zbj/O5gw+CydxwIpcOL815Qw+HD2BPxNJDjyF6Aw+UzCRPVSEv77v6Aw+cPM7vyCLbjwA5Qw+dPtuPysKjT9U5Qw+OY58v1xnwD7D5ww+OnZZvu4mSr3O5gw+hs8hPytb/77O5gw+aCsJv0VXhL8b6Aw+2ixmwP37KT9P6Aw+eWBsv7ASJz7O5gw+3T2BP99cVT/D5ww+5/etvsSduD695Qw+9Mf1PmXxZj8A5Qw+JEJ8v7SLeD/D5ww+bnPeve2xcT/D5ww+kEPdvtCNgL+86Aw+0t3dv4Ydur7X5ww+8/JKv9U0T7/T6Aw+jkIGvrtdJL/5DQ0+YoSKPy1SpDsb6Aw+R49TP9cQfz8R5Qw+Tqjhv3BEjj2J5ww++9zbvaiRQ7+A6Aw+cKRFP6CMYT9D5gw+2R7bwPFwKsB1PrDAtzEtv/fQzztN5gw+aAsGPwM6KL006Aw+KtlyPyZXR7/46Aw+1d1qvxuHqT0P5ww+jrkNPycqXb8A5Qw+Kd3aPlJETb8i6Aw+U1tyP2AxUz8A5Qw+sKlSPzzUijwP5ww+4Wl2v/kZCj0A5Qw+LdSHPu3Yqz/26Aw+xgWUvlfScT8A5Qw+Og7oPh0A274P5ww+9kQlPyfHFT/D5ww+A5KDPkDnT78b6Aw+nBxKPxc8Rb/D5ww++yAuP7ypXD+A6Aw+2s6GvvmKkb8C5Qw+FAIZP99sUD+F6Aw+CYEMvxKEiD8b6Aw+qc+bvpF0Iz8A5Qw+xooAv2jBUT/D5ww+DaBKPzIucT8b6Aw+VqW3vbTpXD/D5ww+2th6vxRuAj9Q6Aw+lnslwF/+ij/o5ww+71UBve+dKr/85ww+VxYHP1SNgz8A5Qw+rMVCv/doUr8A5Qw+Pyx/Pwm2fD/D5ww+94gYvpMyVb9C6Aw+AFJBv6DlGr8A5Qw+P8dAP/GQAr/F5ww+d+kuPzoZ2z0b6Aw+GWJuv8yzh78hhww+ylF8PyTTgr/B5ww+M7M8PwA3gD8P5ww+GhqJPlrAhL8A5Qw+4+eiPtTlRD/O5gw+DTNpwPJikz+J6Aw+zX66PgBQhz4b6Aw+L71lv93Pgb/O5gw+H5fuPqPK9z7D5ww+Mwg7vxjHbT/D5ww+9XWePy9bP78z5ww+kwV7P36iDj5I5Qw+J6oRP7ugKD8T6Aw+rGicv31zD7+ENFI/fv2MvfhALb9y6Aw+B6SQv1qKqL/O5Aw+4B/BvQICDb8f6Aw+7+yFwLx5t7/T3Qs+GdyFPixZc75C6Aw+butovrMmkz7H5ww+d355PuhJaDpX6Aw+d/vYPVidYD9C6Aw+s/1ePx/DJT8A5Qw+nlX/vuTUlr7O5gw+BhwmPaDrIT/D5ww+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkuASwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAGAAAAAAAAzaW6v8mptz/6GIA/AqxdP77XyT+CKYu/Xg4hP2I2lD8nt9s9TdJpPnFwlj/+NwA/7VCNP/mu2z9LNE8/jHjOPw8axz/JpR2/IKmtvzxLZb6CKYu/x4T+PUGWcj+Rd1W/Vh8wPwMDPr+CKYu/coZPvtmpDT+CKYu/5DOgPTAtXD9lsQO+y867vTRYbT+CKYu/icQXv10biT9jIW6/cjtAP32Pqj908Mu+cDdKP8eCwj8vfb4/olYJPiOIEL2CKYu/O1SYvwvKbT+ECdU+tBvcPwB0T7/qutU+oMMdv02OhT9P1Jw/FHHBP1BISb8dqK0/p7uUv1HOjz9/Pae+eH3RPyXNjr+CKYu/KbtBv2q+xz9p1wa/OfLHPcVdor9AaBw/A++bv+3iiz9/6vA/DyYlPYGmiT9KAiq9zNjOPy5Uhr+CKYu/I2WFP90cgL+CKYu/yOSbv/+4AT9m05Y+gY7Rvr0emb8JnZc/Qs7Ov3tvwD8wq5W+kELEP7h0vj+CKYu/S9gwPdBijT+K45Q/EF44vgqc1T+yxm6/znTmvgwBZ7+CKYu/nuJFPySloD90ctQ+ZgVqvyI42b/TtOu+aDZ/P4AW+b5U4ui9UCiuvzoBnz/nqzS/igNWO0wvqD+e3X2+Kwuvvi3Cn76iuXs/sBoTv7gGyD8ZSIi/rndZP9HkIr6hhuY/oMVMv3RBqb/JJ3Q/8wgnP2dJrT4xyKU/cIARv1Hhmj+5nI++uDs5Pu9cur+CKYu/ltDPv6tL1D+CKYu/71YyvmrsL7yCKYu/T6h7v81Qxb8244w/08StP1ksKj9u8ds7TPCsvZ0o4T2CKYu/JAPCv1w/Ar/VMnU9BZzYPwfbqL+CKYu/iC/8vh0PbL5N/PQ/Kp/Tvt3DJ7/h44c+TKWzP1c90L/fD/M/1/QlP7PFFz+3ePI/mRW1PwW0Xb+wDy0/T25/v433kb9w8ps/ONfHP+tdwz+HhV8/BSarPizkrT+CKYu/CCNKP9M3ID+CKYu/ONfSP0v8xD92Uok+6XbTP/lZdL8nqiE+VvBlv8OAhj6CKYu/UE3tvh8Qmb9Sdw49g7yVP3JJhT9IPu8+O0Rbvi6Xtz+CKYu/51Npv/G6jL+CKYu/Ib7WP2vgkT8rf2Q/eBPTvwlvzT/xGqU/q0M4vtyjyD8uHdM/kPwrv0KFqj/IvXW/is9iP3nXGb+Ja/A+pGdOP8ORuj+gDV8/UScwP7ZaEb8NhG+/iokuPl4atDw2k04/Nbq+P1kcx7968RE/BXNVPxgEcz4X0uk/M23JvrO317/gAIg/Jkw0P+OdAD/4Mxw/HRaqP/5Mqb/JDli+WMfHPQLFmD/TY2C/wVizP35jij+tPyQ/sV7xPfZuc7+CKYu/98SWv2bdqT+CKYu/9+62v/ANtj2CKYu/4QWrv5+pKz84Y/2+45p7v+TMw78DoNI/WCyfP3iw9b7DkjY/E6OSP8Exjr+1+hG+dt2iP978Xj+CKYu/wanQvw7CuD6P8sY+2qiPvCW+sj94CIY/GKovPzSATr9hkFM/GSF0P/WCsT8ilkQ/+VgdP9VBrj/jYnu/ZUC4P0LOqL4jkJA/ZiplP1590T+CKYu/yswAvrtgEj34hAq/itY+P375NT86f8s/oOSPvlLsvj9iFjg/v81PP5goi7/MODQ/WB5gP7cAlr+CKYu/7KJGP8Hvub+CKYu/Ordsv7Sbmb+CKYu/w4iYv5sVhj+l7oS/6ZlrPyDxNb+GJOM+VHsKP2J5Y7+CKYu/9a7cvwNVvD+CKYu/fuMtvzUFnj6CKYu/z2SXvsZdpj+CKYu/7bTUvQdAwb6CKYu/6qvZv5NvrL+fMyq/jT5EvfSKnb7gGDa/xn6tvwozFr4OxzC+ZlJnP47xKD+OkqA+BHmHPS2YQj6CKYu/wKLSvr1Kgr62oBm/IBbSvyZU2r8JstI/XHJ7P9LHKr9AQZo/B+dpP7tooD2CKYu/PcSbv0Ixor/kZ3S/98F0v+wyCT+Cu7e+QAArPqH4DL8E4ro+urO2PlYcDr+CKYu/Ki/OP4vfcz2CKYu/lGgOS4BLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWACYAAAAAAAAP+Cs/fAMtv+eFT79mLco+CjJPvTfgCT8sOka/NXtlvwjiK78A5Qw+qnvfvP6yD73Zx0S8g4E8PdahAT2hhIU9q/45vDHhwbwziaA7o8JFP+5zCTxqaFK/6KduvGD6SD3ZvS2/PRBCv/XMcD8HkHS/+ugMPvj54Ly82w+9fOQtvCMnPT35tgE9d4SFPfIHOrwI4sG8zl+iOx+G9b1s+ti+6KJCv8aVJsBgHAq/8KEvP6urKT59SlE/N2ATv8znDD5NSeG81KEPvbj6P7ySzD09nYECPQyDhT2DGDq8KMfBvG3Aqjs2PGC/z9sdv9n7Dr/82ui+nD+uv20Wmz8Fe8c/3QRmvmHKHsCNuQs+Nqb6vMrtQb04nJPAm5wuvwzCj8A9QbU9JqA4vYm/Ab6b90dAsN5GwHAK2z/5sSk/9MHGvY1jYT5dZUc/m1Msv8z+M78r9ks/zuYMPtES4bzjOQ+9wipGvJkrPT3MVgE9oYSFPav+Obwx4cG8IuKgOzdrpr9QdjRAhhLsvkDDa7+Z/aO/eAbHvx8Rwz89Z2Q+F9gGv8PnDD59rOC8qhoQvUYnXrwJZzw9swcBPaGEhT2g/jm8LOHBvPzpmTuEykE/pelNvtO0LL9OabA+OczKv/YjPD/yKUa/9JU/vkhIKT/D5ww+MkrhvDCgD71i4C+8AMo9PTiAAj2hhIU9n/45vCzhwbwTvqo7zZNVPrHaiL6h2wq/jC8WQPpf+j+kqqw/7XM9vxJQPT9OPiO+8+gMPtre3bzyQhK9q4TWPxTaez5X4om/CISFPQPUk7zss9O8GDXxP9WCJz8A9BU/qKOdPpZJwj5I6uW+ZIgUP6pGRr9InWw//MMvwDckpT3SOsg9e1xcv0x1AEB6Wde811iGwPsrvb/5dMtA33K6vh5Rcz/wda4+OqKIvkYc3r6Qx20/K4NVPncNiT+SNWI/pNGAPz0+b74wyAw+i/vjvPdXFL3hdSpATyFWvoWjbcDx54k9l7S2vHV0r7wZOzRAz4PTPp5Gfj9qVAe/mnYWv9HbU79CVADAPRHDPx0dcT+at8Q+G+gMPsGN4LxVxQ+9PBU/vK5MPD3nHgM9oT+FPeFFU7wEsMm8uVykOxk7cT4XvKK9Bb2yvA+oZD5RoKm83zrLvE9HRr9vjOm+qixqvvkNDT5Q+eC82dsPvWivQrw5Jj09Y7UBPaGEhT2r/jm8MeHBvGhTojsMtRo/RH2mv68NVr+H5PM91NervoLJr7x/RUa/k8ryvtOgPz7O5ww+NJLgvI4CEL3mQ5K+BZI8PX4CAT2hhIU9uf45vDjhwbzf7Ks7N0jBvh8rzz0TARu/BtdXv4tt2D+aW38/SnPHP+Lfnr+fDlK9ky19PtKj5LyR6SHA3NakPgAAQMEQt5pAMmgjP79dEkBR0TPBJkl2QEAgwb/Px5G/eTndvVdo+b/wXD+/qYoPv/IlRr+ncSfAoxh1vtPmDD5iU4dAITsPvTpblsARHz09LhYCPX2EhT1I/jm8ruTBvGdHoTuqO70+jNiqPccD/L47TLa/MfTIv/o7778sEcM/fSUhv3gfRL+z5ww+RlDhvCihD728dUC8fMs9PWF4Aj0sh4U9rmA5vDjSwbxjwKo7ya6iv1MoQD8ayw8/Koy+vr0e2T0XJ4M/5SHDPzt3WL+75u6/gugMPoGw4LxpyA+9f3wkQFsGPT2/mwE9oYSFPav+Obwy4cG8wlalO9O7nr/v2DY/JyFavtzuSj5Basg+9NkkPyB7xz+7M2E+R3tav4DoDD7kEeG8H6MPvZa6QLzrAz09E50BPaGEhT2r/jm8MeHBvFZZpDsmEYq+6Ikgv6uuCb/B2AXAjmJLP9PgQD9wasc/k5jXvs9vkb6e6Aw+1dvgvLDbD73hCUO8cyI9PTHRAT03j4U9tBA8vDLhwbwMIKI7YQFewAe8mj+v0fk/frGJPlxtkD6NdrW9KHvHP/SVBL+e5NQ+AOUMPql737z+sg+9F+xHvIeBPD3YoQE9oYSFPav+Obwx4cG8voigOxOXQD/TWfy+anFXvwhYlT7M0ZY++GtLvGxIRr+8I3c/mlj5vvboDD5R+eC899wPvam1RLwEKD09YrUBPWSFhT2O/jm8vc7BvGhTojtHEiTAKCgyQIcomj/qc6K/zQsQv8jUAD9SbAW/xYBiP9RBLb7O5gw+0RLhvOM5D70Rzka8mSs9PcxWAT2hhIU9q/45vDHhwbwV4qA7PCc6PzOAJr9KP0i/B+cYv35JyL0cmey/PkdGv2VSBzwLmo09QugMPtgj4bwJQBC9QBtGvEM9PD0WVgI9osmFPS8ISrzCL868uuCdOxG2Sr5M0BO+ecBVv74Dur83WHi/3mgDP+d3xz9WZyW/GQiMPWYKID7q7Fq+rDgQvTplXbxVHArAQECiwL0tSD/snarADncRvyNfhL81Iis/SLmkvrnwyL7BFM2976bEPfP0679IR0a/fRq0vh8hNj/O5gw+6SjgvKvvD70/w0G8aX89PaevAT2ehIU9Cf45vDLhwbx8xKM7mqBDP2NCDb9sfAe/P3kwP00fsz0/SJk/cTZGv21nyD7cpjS/w+cMPihK4bwpoA+9F7QovPvJPT0ugAI9oYSFPZ/+Obws4cG8Cr2qO5fgqL7D6Wg//jM9PngrcUAsPco//YGlP2w7Rr+82yU+P4PVvsPnDD5DSuG8PaAPva/3O7wHyj09SYACPaGEhT2f/jm8LOHBvNG/qjvtPda+0z1AP+MK977smzi/4ADvP4MPqD8xXvu+A5mGP1jqmr3D5ww+QUrhvDugD72ASDq8Bso9PUeAAj2hhIU9n/45vCzhwbyTv6o7/Z02P+9MYb/0wOy987plP2Lwuj9LurA/RUdGv6T6pT63cTu+AOUMPql737z+sg+9vYNGvIWBPD3XoQE9oYSFPav+Obwx4cG88oigO3rA2b/8j3Y/bw17Pj4WMr/qUVE+o6/9voW0oz+FQ8o+Fk74Pc7mDD7REuG85DkPvdLhRLyZKz09y1YBPaGEhT2r/jm8MeHBvDvioDvnFAk/N5vCPYY6Nb8PlJe+UZjav4vFFcCdrq8+Thsyvn0WLT+z5ww+RlDhvCihD728dUC8fMs9PWF4Aj0sh4U9rmA5vDjSwbxjwKo7GiK3voybIz/A5Gw8VfzpP7fwRz/gsVI/xkVGv0oIRb/+x2S/EuMMPh2t37wITBC9pPj9veG9bb/rEM6/NMaFPcHHL7zjxbe8KrYtPvFFgb8e6qo/rN4Kv3a54b8jHtq/ljxdPwTyxj+xmiI/tCGNPxvoDD5W3OC8RIgPvTRuS7xt0Ts9MpwCPaE/hT2KCUq8Yi/OvFZJoDsRj0U/2Vs8vVjTB786JN4+yT7DP1AkZj9KR0a/CIAAP0dG7D745ww+vyXhvFNWEL1P0p+/Qtg8PcowAz06yYU9gJpXvBcGxbwdZKI7ccXDPr+5FL8wS4++dn/aP3FwUD9bXLE/JXY9v72Ngj8s8ms/zuYMPs7f4LzOfRC9gaVDvNkgPT38EwI9oYSFPav+Obwy4cG8U+KgO2MBWr97MpY/cXczvyxVPMBMFIQ/AWSiv4k4Rb90SLM+OJVsPwDlDD6qe9+8/rIPvd4xRLyDgTw91qEBPaGEhT2r/jm8MeHBvEiJoDuNPYa/8n6YPzrIWr4HzpC/uhOkP7ZzVz8fe8c/PmcGPwnjAz/O5gw+0RLhvOM5D71RPUa8mSs9PcxWAT2hhIU9q/45vDHhwbwg4qA7x9a0v96PVD82Nh2/LgYRv3T+LjzhXp++UbajP1bC8L1kWBS+w+cMPpis4LzAGhC9s2hKvO9mPD2mBwE9oYSFPaD+Obws4cG8JOeZOzYgQz8sH3q+EZ8xv/IRSz/nsJ6/oxOqP56nPr8be4M+ANkkPwDlDD6pe9+8/rIPvSXgR7yHgTw92KEBPaGEhT2r/jm8MeHBvMCIoDvh4zA+0FA4vl48O79FMMs+fRJpvhBQhr9Easc/1JiKvvCqDr/V6Aw+1+3gvMXbD72I4EG8GSY9PYzEAT23ioU9ryw7vIDiwbxoU6I78GBJvyHt4j6GPAw/QUK2PhXKuL4XkoO+xkZGvxgJLT+qIMK+w+cMPoOs4LyvGhC90KpZvANnPD2wBwE9oYSFPaD+Obws4cG8VumZO31uST+TpWE9LwwHv2k1HT8GhYk/iEiZP+BXRb+JlIy+sYehvs7mDD7REuG84zkPvXl1RbyZKz09zFYBPaGEhT2r/jm8MeHBvC/ioDvVYru+KmyNvQ1NO78EIkbACoggP7RjBb/G8cY/eS6KvsxeBj6h6Aw+7BbhvJbVD71INkG8PD89PRHOAT32iYU9D0U5vMgIwrxmxKM79ua2v+8+Nj+p7LA+E46Hvx/5AD7YS6W/lRWcvkEemr4NGW4/zuYMPtES4bzkOQ+9bvpEvJkrPT3LVgE9oYSFPav+Obwx4cG8OeKgO8nvdMB7Z/8/mKVRP7M9lT7dk4U9pDphvSpzPb8LJ3HAilw4vzXlDD7nVIdA5AUQvfyt6r+gOz09gIQBPaGEhT2s/jm8MOHBvFk5pjtzakg/xTjZvmj04r6ad+g+RDBCvpfgWD8uNUW/HD2BPxNJDjyF6Aw+48zgvG8GEL1mtE68W0Y8Pe3cAD3eZYU9Saw2vPYvw7wc55k7gtwzvVhWnj6OvSu/3KXzP/MKkjw/w5s/Dpr7vlMwkT1UhL++7+gMPhfQ4LxFyg+9BuNDvEwTPj2RR/88OJiFPa5KEbxh2LS8YQOhO/TsOD+KVKO+Av5Wv+Gypj6VC5i/JNGdPieGwj9w8zu/IItuPADlDD6qe9+8/rIPvbFNRLyDgTw91qEBPaGEhT2r/jm8MeHBvESJoDtMg0Q/DD1XvvxOJr9rwWo/4DH/vMuDsj9ydz2/dPtuPysKjT9U5Qw+zpTfvP+yD70mJEe8g4E8PZaAAT1jd4U9sWc3vCfhwbxUiKA7QG/Sv7/EnD9NCUk9b7dLvyWHlT/C6nk/hGzHPzmOfL9cZ8A+w+cMPkJK4bw8oA+9hxM7vAfKPT1IgAI9oYSFPZ/+Obws4cG8sL+qO6qfCL9GSII/BExWv1Rk4L+vFcO/9gvmPpzxxj86dlm+7iZKvc7mDD7REuG85TkPvdnQQ7ycKz09ylYBPaGEhT2r/jm8HOHBvFDioDsySjo/kFBZP7IWJb/glb896BI+vgtEVr8/k0W/hs8hPytb/77O5gw+zt/gvM99EL0PSUa82iA9PfoTAj2hhIU9q/45vDLhwbwf4qA70lAPP6CXML8ZWJm+frkePqLiOL/5jym/kDRFv2grCb9FV4S/G+gMPkkW4bxtLxC9f+lFvBJ7Pj2nzgA9oT+FPTP1KbyekrW8JEqgO9MxL8DhUvE/rTv6vX/kjb4ZksE+fnORvCh7xz/aLGbA/fspP0/oDD7rI+G883sPvQ6TjkBUNDw9cEgBPf3HhT3ZBy+8N0TPvP4onzua+n+/m+sBv2xGEr+WV+s+BxvVPcPUSz7Gd8c/eWBsv7ASJz7O5gw+zt/gvM59EL18EkS82SA9PfwTAj2hhIU9q/45vDLhwbxL4qA7Ly4Qv7tbdL67mhy/jKibwPDyKj8Tesa+GkNGv909gT/fXFU/w+cMPkRK4bw9oA+9bIc8vAfKPT1KgAI9oYSFPZ/+Obws4cG85b+qO86wRD0q7vQ9SDrGvlYEt78moyS+zTfEvzIRwz/n962+xJ24Pr3lDD6q8t+8YYAPvQ7fQrxqiDs9fLYAPSyQhT1zpye8pOTLvE2CoDs98bG+9+F3PvkTOr8QU0zAb1mRPzOhrr8QL6M/9Mf1PmXxZj8A5Qw+qnvfvP6yD723xkO8goE8PdWhAT2hhIU9lv45vDHhwbxYiaA79Rzqvw2wqT+RjCm+N6GAv06vBL+8qY+/8F37viRCfL+0i3g/w+cMPkBK4bw6oA+9k7I5vAbKPT1GgAI9oYSFPZ/+Obws4cG8fb+qO1bz4L74kYq+jfIOvn7v3T4CpyG/x7vfv8Rvoz9uc9697bFxP8PnDD5FSuG8P6APvSR8PbwIyj09TIACPaGEhT2j/jm8J+HBvAjAqjuaIM6+hupIPxs6vr6S0+S94OTqPl6fkz88e/2+kEPdvtCNgL+86Aw+O3jYvHXTFr30cH6/NhKhv37o47+UjYU9rotnvCokh7vlM4U9g/x1v60jrT8aiuU+89+PPjAR0r6zTJE99EZGv9Ld3b+GHbq+1+cMPlNn17z9rBe98F8VwAas+b+zXTu/I7aFPcSRiDtWgf67BhQ1PyteAL4pBpU9zx9BvzHo/T4udU0/9k1RPyt4uD/z8kq/1TRPv9PoDD4A/OC8s+UPvfGyQ7xhND09w7MBPcqJhT1YBTq8NGDBvJlCojsZO3E+F7yivQW9srwPqGQ+UaCpvN86y7xPR0a/jkIGvrtdJL/5DQ0+UPngvNnbD71or0K8OSY9PWO1AT2hhIU9q/45vDHhwbxoU6I7Or1WwFe28D9tpNg/Wu3DPZRrrr1VA1K9qfPGP2KEij8tUqQ7G+gMPsCN4LxVxQ+908A4vJlMPD3ZHgM9oT+FPfZEU7zMsMm8pl2kOzqJzz1Wnd8+pi4jv5L/sz/0s/o++QWaP+1CQL9Hj1M/1xB/PxHlDD6/gN+8/rIPvV5nQ7yBgTw9HZsBPfSBhT2ueDm8LeHBvEuJoDtYYp6/JIT1PjPQBj5CPLe+cUwgP3DiVr38esc/Tqjhv3BEjj2J5ww+5FrhvBAqEL0GL7E/NOc8PUSkAT0PhYU9Vfo5vH/ZwbzcPqc712K8vlfa7D4/t+e8LBsJQEqvaD8iI5k/uiRGv/vc272okUO/gOgMPuQR4bwhow+9kZRBvO0DPT0TnQE9oISFPav+ObwZ4cG8N1mkOzsNQj94fuA+HREgvwSAFD6866w/8EBiPrlGRr9wpEU/oIxhP0PmDD5i3N+8BLMPvVyzRbx7gTw96CEBPa9RhT1TCDC89+DBvAmHoDtm0oPAsgObPxxSjj3iwdA+UWlQPhvghr8ze8c/2R7bwPFwKsB1PrDAvKQIwRDzD71YdC3AMk4+PRiOAD3vPYU9hQslvMU/t7wteZ87y1jFPtSdcT6h25y+u4oJv3MFiz+cJQ/A/iyjP7cxLb/30M87TeYMPjJk4bxmWQ+9Fd1CvDKQPT3+cQA9P7WFPcMuKLwf1b287d+gO9hcND/YQDO/FM/Ivg1q0j3/+N89DNmJvzIpRr9oCwY/AzoovTToDD5Xf+G8Nv4PvZRGVb8WED091P4CPa3GhT0Onle8uzLCvNNEnjtPWDk/4H8bvzHTU783+TS966YHv/ghNL9SR0a/KtlyPyZXR7/46Aw+RfngvFnbD72XcUO8bCU9PXG1AT39hIU9uv85vHHpwbxoU6I7890yP3LTOj84WFe/nP7CPjFmDb9ylUW9O0dGv9Xdar8bh6k9D+cMPuJm4LwBjA+9jnghvGtYPj2nowA9oYSFPZj+Obw64cG82rSvO+sJPcCbhP8/tyfsP+EJLb7uXZa7XqK0vRZ6xz+OuQ0/JypdvwDlDD6pe9+8/rIPvSOHR7yHgTw92KEBPaGEhT2r/jm8MeHBvM2IoDvg3T0/olQzPZayTr/BT/A+a2V3vx7fMD8NR0a/Kd3aPlJETb8i6Aw+D5DgvG3FD71szzO+8W88PYc1Az19QIU9XKBUvLtdyLxTcaI77SqHvqtZJT/+nYm+DllAwCWJ678T0Sm/K0pFv1Nbcj9gMVM/AOUMPqp737z+sg+9T6lEvIOBPD3WoQE9oYSFPav+Obwx4cG8N4mgO8FZAj/ztjO/OSyMvknizr4iKs6/8jUYwAEtoz+wqVI/PNSKPA/nDD77ZuC87osPvcqHM7yPWD49maMAPaGEhT2Y/jm8OuHBvNG4rztyypC/fglEP3+kiL6uKZ++djeoP743gz+5F8c/4Wl2v/kZCj0A5Qw+sHvfvP6yD730tUO8goE8Pc2hAT2ehIU9Cv45vDHhwbxaiaA7ZsXxPj+MoD97mEu/iDwov8q7hD9yMGq/ctP9vi3Uhz7t2Ks/9ugMPk344Lyr2w+9Emd0wGMmPT04tAE9NoWFPXbnObyb38G8VVOiO97tYsB5VK0/uqPoP2WFvD536qk+wX6nvRl7xz/GBZS+V9JxPwDlDD6pe9+8/rIPvQBMR7yGgTw92KEBPaGEhT2r/jm8MeHBvNWIoDvDET7A27wgQB6pmj52PPG+V94LPwISZT9ZeAa/Og7oPh0A274P5ww+2mbgvAeMD73tQxu8X1g+PaujAD2hhIU9mP45vDrhwbx8s687OVoHwL0U8j8ihp8+qVF9v2qHsz20cjk/Zp6+P/ZEJT8nxxU/w+cMPj9K4bw5oA+9Xpk4vAXKPT1FgAI9oYSFPZ/+Obws4cG8Vb+qO0M+Pz9/AG+9qPIMO1m5S74aZIo8Ji4iwOAVHD8DkoM+QOdPvxvoDD7BjeC8VcUPvd+JQLyzTDw96x4DPaE/hT0XRlO81a/JvINcpDssna6+GFYAvW/fGL+2wSJAvQHGP8UUaD9udT2/nBxKPxc8Rb/D5ww+UkrhvEGgD71txj68C8o9PUCAAj2mhIU9kv05vBPhwbw4wKo76PDKvimwHT9MtNy+JkloP4eJED+S9ru8xjNFv/sgLj+8qVw/gOgMPlSw4Lzz7g+9OE1FvCU9PT3A2QE9n4SFPTL+Obwx4cG8YU2gOzXJQz87SGA+8CgGPmQI0j1cHIE/DHDPPQBHRr/azoa++YqRvwLlDD5MfN+8ELMPvamyND1Zfjw9658BPaGEhT2r/jm8MeHBvOYKoTuGKyc/oWa0PsDhWL/wUlk+cWeTv0x0yL3r8cY/FAIZP99sUD+F6Aw+EwnhvJzMD70PIC28sg89PX6lAT1Sl4U9r6s4vDHTwrzMX6I7STcFP/5HwL5hULi+UH2UPFrNiL5OHwLALQFVPwmBDL8ShIg/G+gMPkkW4bxtLxC9I/5GvA97Pj2jzgA9oT+FPe30KbyxkrW8/EmgO6uKPMB0ee8/SyLgP9BKGL7a0TA+aJHfPSh7xz+pz5u+kXQjPwDlDD6pe9+8/rIPvQPJRryGgTw92KEBPaGEhT2r/jm8MeHBvOiIoDvrvFDAsErwP9TnzT+CuKw7rsD1PFV7ID2m8ME/xooAv2jBUT/D5ww+MUrhvC+gD73LeC68/8k9PTaAAj2hhIU9n/45vCzhwbzfvao7G1Wfv+j2zD5JMoU+uS1/vjEiJz+1aRc/UXT9vg2gSj8yLnE/G+gMPsGN4LxVxQ+98+M/vLBMPD3pHgM9oT+FPf9FU7zqr8m8m1ykO+MtE79Pgyw/H4xPvhcSMcDPzsM/Sp7wvlJHRr9Wpbe9tOlcP8PnDD6YrOC8wBoQvX8qSrzuZjw9pgcBPaGEhT2f/jm8LOHBvBvnmTtD1b0+3tkWvgfheL1yE6w/JaQMvyEw5r9bR0a/2th6vxRuAj9Q6Aw+ZZ3gvFXFD715e0K8uUw8PUYKAz1mN4U9uqpRvJSvybxIXKQ78pR5vwHWoD9bPkS/p653v3KbNL9B8Hq+oWrHP5Z7JcBf/oo/6OcMPlD54Lw4zdTAYecWwOcemMBmRTa/ueeEPYtOij39jMe9ZAj1P/fTi718jgK/xcgUv4P4LMBIbZ2/pv6Rvy4Rwz/vVQG9750qv/znDD5Q+uC8fJ0PvWzpQrxowDw9cpkBPQGdhT0rbDi8I+nFvMkBojvWvSvAjp8DQHcnaz8+s9C8k+y/PncRcD8MVkW/VxYHP1SNgz8A5Qw+qXvfvP6yD718SUe8hoE8PdihAT2hhIU9q/45vDHhwbzWiKA7mPMNPzo9rT8TICS/lSfTPemOc70nCTa/ENUvv6zFQr/3aFK/AOUMPql737z+sg+9nINGvIWBPD3XoQE9oYSFPav+Obwx4cG88oigO7qYe7+MtaG92r4Kv9ahcT8Ytqo/9VtJPyB7xz8/LH8/CbZ8P8PnDD5GSuG8PqAPveqmPbwIyj09S4ACPaKEhT2W/jm8K+HBvA/AqjvNZxE/q+2qP/nRWL6FkO8+8yaovbNDhz8dREa/94gYvpMyVb9C6Aw+2CPhvApAEL03wEy8Sj08PSlWAj2iyYU93wlKvEovzryt3p07GkQjP/KGYT+YrVa/X5VdPhE4qr9D+pm/A+ehPwBSQb+g5Rq/AOUMPql737z+sg+9AUpHvIaBPD3YoQE9oYSFPav+Obwx4cG81YigO5uULD0fAi48ShxFv6JIrz8hKHE+aGWzv3E2Rb8/x0A/8ZACv8XnDD4CreC8iBoQvSpZSryVZjw9GgcBPUSEhT238zm8w+TBvCDnmTuAC0E/lwNpv1pLib6i+j++uoUOvp3W2b8jR0a/d+kuPzoZ2z0b6Aw+SRbhvFovEL1yI0e873o+PaPOAD2UP4U94/QpvPuTtbz2SaA7gp/7visHvr25Wu2+PULvvrjfQT/ctmg/Il77vhlibr/Ms4e/IYcMPim8u7w4sTy9g+d7PoPumMDlA9K+q0uUPbYqoz0CD3C9aLMPPz03gjxC6oM+d3tVvwvh6L+9X5M/ib8yv3A/xz/KUXw/JNOCv8HnDD5+SuG8SKAPvTFWP7wWyj09BoACPbiEhT0I+Tm8puDBvEzAqjspuQXA5yU4QO70FD9M26e/t16TPpu9LT9vQ0a/M7M8PwA3gD8P5ww+3mbgvASMD70RUh68ZVg+PamjAD2hhIU9mP45vDrhwbwptK87dY0+PyuttD5L3lK+n2FVPjzhsj8pjks/wDRFvxoaiT5awIS/AOUMPuMt4bxpBBG9Fic/vMwTPT2xBgE9oYSFPav+Obwy4cG80h2kO1hwQz/bzxY+T34Mv8qUtT6EpSs/iEBIP7MqRr/j56I+1OVEP87mDD7REuG84zkPvf1SRryZKz09zFYBPaGEhT2r/jm8MeHBvB/ioDv/ahHARzaEP7FqJT7V6Zm/AcjaPhZvmL4Oe8c/DTNpwPJikz+J6Aw+2+DgvKOlD70SOCdAmBM9PTeJAT2ghIU9//45vDjhwbw5MKM7vVo3wMdPAEDRyLo/WfQBvy2S7b7U3Rg/sWsJv81+uj4AUIc+G+gMPkoW4bxuLxC9Y19MvAR7Pj2RzgA9oT+FPY/zKbwSk7W8MkmgOwZoNz956D+/10QNv4O6cz/CeEg/joGaP11GRr8vvWW/3c+Bv87mDD7REuG85DkPvcXrQ7yaKz09ylYBPaGEhT2r/jm8MeHBvE7ioDv2s0M/Do8bv+qre74TBNU+tzEQvtUCgj+yRUa/H5fuPqPK9z7D5ww+L0rhvC6gD718NC28/sk9PTWAAj2hhIU9n/45vCzhwbyxvao7hxZFPwCyOr5Wc1e/wyCCPlA0Z75FX308FURGvzMIO78Yx20/w+cMPidK4bwooA+9s8QnvPvJPT0tgAI9oYSFPZ/+Obws4cG86LyqO6qZPz8h2Xa+6OqevLbizz5cphU/jORPP60lRr/1dZ4/L1s/vzPnDD7wRuG8JGwPvc2BP0DRKT096tQBPbKVhT2Qkze8LhzBvL8pozseACQ/kMN0v0M+U795QqG9IabQv8+j4T6Gasc/kwV7P36iDj5I5Qw+bZHfvP+yD73HrUe8hIE8PQ+FAT0reYU9zcA3vCrhwbxTiKA7XFAGPiaBgb4h9xC/OV3xv5FMsL9/+Ei/MxHDPyeqET+7oCg/E+gMPoT54Lw/pA+9zABDvJHXPD1YsQE9VKWFPdj9ObzL/sS8EiCiO9Jk+r4DNb++cfQTv2X8Lb+lYPg+b/z9PlMtlj6saJy/fXMPv4Q0Uj+mdnk7B7bpvQ17Nb6W+VbAencjPZvSDEDAJC87N25lviDHMr7vEq8+xTYxve77eb2kfQk/cHgNPjmenr+/Rka/fv2MvfhALb9y6Aw+2CPhvPE0EL3H3UK8cis8PQxWAj0gwoU9WwdKvC/nzry64Z07ymp8v4hgB7wJZm++F8WsveYXwD87Ztk+BXuqPwekkL9aiqi/zuQMPgEL4rxctg+9GmaKQAdsAL9TDvq9rn2FPfnAPbxRCMO8epFRP6t6V75whXg8BAknv9+zRkAnS8o/h6qVvmVzPb/gH8G9AgINvx/oDD71POG8kKsPvfDIAj2p3T09BYgCPTd2hT1HAju8Lf3AvH5RqjuMssS/n+qOPeRJlj/ity6/88IHPlHEcz/oesc/7+yFwLx5t7/T3Qs+7mHwvI4lV70wipw/o2w3wAaLj7+95649cg6wvXtj1L6OHB6/luUswGIZAUC3aKc/BQabvo5HWruywxE/OQS8PxnchT4sWXO+QugMPtgj4bwKQBC9H81IvEY9PD0eVgI9osmFPd8ISrySL8685d+dO6oX5z6xZ3Y+qFo7vQBCFD8Q2Y0/giwDwD9HRr9u62i+syaTPsfnDD4Sr+C8pxsQvSDHQ7xOaDw9ZgQBPfCDhT0xvjm8s9LBvC7mmTsnh0Y8G1SbvgHQIb+iiPO/Z97PvSnWXD+pecc/d355PuhJaDpX6Aw+trLyvCjHHb0GMLo+NmiHv36aoT5wl4U9ApgaPKcdKDxx0Mg/7w01P4edRL/qEzO/E+puPyeWuz4xdJs/qoU+v3f72D1YnWA/QugMPsfO4Lypdw+95y9HvC4PPj2tFAE9osmFPeD0Kby0krW8ZeCdO/W0oL/5eUQ/GN7ivuo2jL8t730/l1P1PXb8Z72z/V4/H8MlPwDlDD6pe9+8/rIPvbl0RbyEgTw916EBPaGEhT2r/jm8MeHBvBqJoDtP/aq/7yC0P3NizL5BX5S/FbKTP5HOUz/8esc/nlX/vuTUlr7O5gw+0RLhvOQ5D72zSkS8mSs9PctWAT2hhIU9q/45vDHhwbxG4qA7rbRVwJEeBUDBl8Y/rnOfvhXG6j7SE6q/kDvjPgYcJj2g6yE/w+cMPilK4bwpoA+9XTIpvPzJPT0vgAI9oYSFPZ/+Obws4cG8Hb2qO5RoDkuASxOGlGgSdJRSlHUu", "achieved_goal": "[[-8.9641124e-01 -6.7141771e-01 1.3759232e-01]\n [ 9.4062740e-01 -9.5532268e-01 1.3760749e-01]\n [ 8.1754285e-01 -5.7568687e-01 1.3760298e-01]\n [-2.2462793e-01 -2.4811022e+00 1.3645001e-01]\n [-7.0310664e-01 7.9672498e-01 1.3759920e-01]\n [ 2.2305007e-01 -5.2673477e-01 1.3760285e-01]\n [-1.8709546e-01 6.6125917e-01 1.3760285e-01]\n [ 7.3950303e-01 -1.5941736e-01 1.3760738e-01]\n [ 9.2427492e-01 -2.7463369e+00 8.0635481e-02]\n [ 1.0063977e+00 -2.3363586e-01 1.3748240e-01]\n [ 9.4185048e-01 3.8421327e-01 1.3760416e-01]\n [-4.5614955e-01 -2.2868600e-01 1.3774861e-01]\n [-4.7420177e-01 1.8713693e-01 1.3760301e-01]\n [-1.2412074e+00 -5.1283475e-02 2.4724416e-01]\n [-2.6163118e+00 -2.3935179e-01 1.3759927e-01]\n [-6.2947828e-01 -7.6610518e-01 1.3760261e-01]\n [-8.4556931e-01 -1.8664163e+00 1.3760570e-01]\n [ 2.1992390e-01 -8.5344356e-01 1.3760567e-01]\n [-4.2108592e-01 -2.8405616e-01 1.3760611e-01]\n [-5.1791310e-01 4.1580671e-01 1.3759232e-01]\n [ 9.6538901e-01 -4.8700410e-01 1.3760743e-01]\n [ 8.8477737e-01 -1.6919643e-01 1.3759920e-01]\n [ 8.2593905e-03 6.9141470e-02 1.3760474e-01]\n [-6.4610803e-01 6.8374820e-02 1.5628967e-01]\n [-3.5176459e-01 7.1144289e-01 1.3759920e-01]\n [ 3.9141408e-01 -7.0567107e-01 1.3760285e-01]\n [ 1.6197103e-01 -4.1701695e-01 1.3760285e-01]\n [ 1.0515445e+00 -7.5642288e-02 1.3760285e-01]\n [ 3.2417786e-01 -1.8305098e-01 1.3759232e-01]\n [ 3.9504638e-01 1.2124269e-01 1.3759920e-01]\n [-1.7393228e-01 6.7612439e-01 1.3760261e-01]\n [-7.6965773e-01 -8.9367664e-01 1.3758495e-01]\n [ 6.3517290e-01 1.1025910e+00 1.3760416e-01]\n [ 5.0195360e-01 4.6147367e-01 1.3760364e-01]\n [ 1.0199505e+00 9.2166400e-01 1.3759920e-01]\n [ 3.5016215e-01 9.2415190e-01 1.3759232e-01]\n [ 5.2501285e-01 5.1518303e-01 1.3759920e-01]\n [-1.1755817e-01 -1.4486843e-01 1.3760285e-01]\n [ 2.5679860e-01 6.4393616e-01 1.3759232e-01]\n [-2.7069724e-01 -5.5729580e-01 1.3760693e-01]\n [ 6.7592001e-01 -3.7915546e-01 1.3760285e-01]\n [-2.7457073e-01 -3.1548837e-01 1.3759920e-01]\n [-2.6988581e-01 1.3122100e-01 1.3760616e-01]\n [-3.0101207e-01 9.3006974e-01 1.3759920e-01]\n [-3.7680080e+00 -7.2016203e-01 1.3759311e-01]\n [ 1.0096774e+00 8.6844144e-03 1.3760574e-01]\n [ 7.0892952e-02 -3.7405646e-01 1.3760732e-01]\n [-7.3418331e-01 1.4559537e-02 1.3759232e-01]\n [ 9.3352437e-01 1.1018728e+00 1.3759357e-01]\n [-9.8654515e-01 3.7578857e-01 1.3760285e-01]\n [-2.1236506e-01 -4.9353532e-02 1.3759920e-01]\n [ 6.3207281e-01 -4.9874243e-01 1.3759920e-01]\n [-5.3581858e-01 -1.0339133e+00 1.3760416e-01]\n [-3.5964875e+00 6.6400129e-01 1.3760494e-01]\n [-9.2334706e-01 1.6315722e-01 1.3759920e-01]\n [ 1.0097004e+00 8.3344835e-01 1.3760285e-01]\n [-3.3978197e-01 3.6057866e-01 1.3759513e-01]\n [ 4.8004115e-01 9.0212089e-01 1.3759232e-01]\n [-9.8538423e-01 9.7088170e-01 1.3760285e-01]\n [-1.0861860e-01 9.4412118e-01 1.3760285e-01]\n [-4.3215609e-01 -1.0043278e+00 1.3760656e-01]\n [-1.7333319e+00 -3.6350650e-01 1.3760315e-01]\n [-7.9276961e-01 -8.0939990e-01 1.3760690e-01]\n [-1.3111326e-01 -6.4205521e-01 1.3774861e-01]\n [ 1.0821650e+00 5.0146789e-03 1.3760416e-01]\n [ 8.2640499e-01 9.9635071e-01 1.3759257e-01]\n [-1.7629488e+00 6.9466472e-02 1.3760199e-01]\n [-1.0735508e-01 -7.6394129e-01 1.3760567e-01]\n [ 7.7204037e-01 8.8105202e-01 1.3759713e-01]\n [-6.8475156e+00 -2.6631434e+00 -5.5076241e+00]\n [-6.7653984e-01 6.3420492e-03 1.3759728e-01]\n [ 5.2361155e-01 -4.1070949e-02 1.3760453e-01]\n [ 9.4862616e-01 -7.7867353e-01 1.3760746e-01]\n [-9.1744739e-01 8.2777224e-02 1.3760017e-01]\n [ 5.5361259e-01 -8.6392444e-01 1.3759232e-01]\n [ 4.2746857e-01 -8.0182374e-01 1.3760427e-01]\n [ 9.4670600e-01 8.2497215e-01 1.3759232e-01]\n [ 8.2290173e-01 1.6946904e-02 1.3760017e-01]\n [-9.6255308e-01 3.3716176e-02 1.3759232e-01]\n [ 2.6529065e-01 1.3425575e+00 1.3760743e-01]\n [-2.8910655e-01 9.4461578e-01 1.3759232e-01]\n [ 4.5323354e-01 -4.2773524e-01 1.3760017e-01]\n [ 6.4558351e-01 5.8507007e-01 1.3760285e-01]\n [ 2.5697336e-01 -8.1212234e-01 1.3760416e-01]\n [ 7.8949904e-01 -7.7044815e-01 1.3760285e-01]\n [ 6.8019074e-01 8.6196494e-01 1.3760567e-01]\n [-2.6329690e-01 -1.1370536e+00 1.3759235e-01]\n [ 5.9768796e-01 8.1416124e-01 1.3760574e-01]\n [-5.4884392e-01 1.0665305e+00 1.3760416e-01]\n [-3.0431870e-01 6.3849741e-01 1.3759232e-01]\n [-5.0211751e-01 8.1935740e-01 1.3760285e-01]\n [ 7.9150468e-01 9.4211113e-01 1.3760416e-01]\n [-8.9670822e-02 8.6294103e-01 1.3760285e-01]\n [-9.7987139e-01 5.0949216e-01 1.3760495e-01]\n [-2.5856681e+00 1.0858878e+00 1.3760340e-01]\n [-3.1576093e-02 -6.6647238e-01 1.3760370e-01]\n [ 5.2768463e-01 1.0277505e+00 1.3759232e-01]\n [-7.6082873e-01 -8.2191414e-01 1.3759232e-01]\n [ 9.9676889e-01 9.8715264e-01 1.3760285e-01]\n [-1.4895998e-01 -8.3280295e-01 1.3760474e-01]\n [-7.5515747e-01 -6.0506630e-01 1.3759232e-01]\n [ 7.5304025e-01 -5.1002413e-01 1.3760288e-01]\n [ 6.8324989e-01 1.0698171e-01 1.3760416e-01]\n [-9.3118435e-01 -1.0601745e+00 1.3723423e-01]\n [ 9.8562300e-01 -1.0220685e+00 1.3760282e-01]\n [ 7.3710936e-01 1.0016785e+00 1.3760017e-01]\n [ 2.6777726e-01 -1.0371201e+00 1.3759232e-01]\n [ 3.1817541e-01 7.6913190e-01 1.3759920e-01]\n [-3.6437409e+00 1.1514571e+00 1.3760580e-01]\n [ 3.6424866e-01 2.6428223e-01 1.3760416e-01]\n [-8.9741796e-01 -1.0141560e+00 1.3759920e-01]\n [ 4.6599671e-01 4.8396787e-01 1.3760285e-01]\n [-7.3059386e-01 9.2881918e-01 1.3760285e-01]\n [ 1.2379748e+00 -7.4748510e-01 1.3760071e-01]\n [ 9.8055381e-01 1.3929173e-01 1.3759339e-01]\n [ 5.6900257e-01 6.5870255e-01 1.3760404e-01]\n [-1.2219443e+00 -5.6035596e-01 8.2111382e-01]\n [-6.8842873e-02 -6.7677259e-01 1.3760546e-01]\n [-1.1300057e+00 -1.3167222e+00 1.3759157e-01]\n [-9.4299078e-02 -5.5081189e-01 1.3760422e-01]\n [-4.1851726e+00 -1.4334025e+00 1.3658838e-01]\n [ 2.6144484e-01 -2.3764485e-01 1.3760474e-01]\n [-2.2746059e-01 2.8740463e-01 1.3760291e-01]\n [ 2.4364649e-01 8.8611105e-04 1.3760506e-01]\n [ 1.0594838e-01 8.7740088e-01 1.3760474e-01]\n [ 8.7105864e-01 6.4750856e-01 1.3759232e-01]\n [-4.9870008e-01 -2.9459298e-01 1.3759920e-01]\n [ 4.0554069e-02 6.3250160e-01 1.3760285e-01]]", "desired_goal": "[[-1.4581848 1.4348689 1.0007622 ]\n [ 0.8659059 1.5768964 -1.0872042 ]\n [ 0.6291255 1.1579096 0.10728293]\n [ 0.2283413 1.1753064 0.5008544 ]\n [ 1.1040322 1.7162772 0.8093917 ]\n [ 1.6130538 1.5554827 -0.61581093]\n [-1.3567238 -0.22391981 -1.0872042 ]\n [ 0.12427669 0.9476052 -0.8338557 ]\n [ 0.68797815 -0.74223346 -1.0872042 ]\n [-0.2026613 0.5533729 -1.0872042 ]\n [ 0.07822397 0.8600645 -0.1286064 ]\n [-0.09170302 0.9271271 -1.0872042 ]\n [-0.59284264 1.0711476 -0.93019694]\n [ 0.75090706 1.3325039 -0.3983189 ]\n [ 0.7899084 1.519616 1.4881953 ]\n [ 0.13411954 -0.03528608 -1.0872042 ]\n [-1.1900705 0.9288642 0.41608822]\n [ 1.7195954 -0.81036377 0.41744167]\n [-0.61626625 1.0434052 1.2252291 ]\n [ 1.5112634 -0.78625965 1.3566929 ]\n [-1.1619767 1.1234838 -0.32664105]\n [ 1.6366415 -1.1156355 -1.0872042 ]\n [-0.7567621 1.5604985 -0.5267244 ]\n [ 0.09762997 -1.2684866 0.6109657 ]\n [-1.2182316 1.0928627 1.8821563 ]\n [ 0.0403195 1.0753938 -0.04150609]\n [ 1.6159911 -1.049444 -1.0872042 ]\n [ 1.042149 -1.0008808 -1.0872042 ]\n [-1.2179193 0.50672907 0.2945816 ]\n [-0.40929034 -1.1962506 1.1844798 ]\n [-1.6156695 1.5034021 -0.29232168]\n [ 1.5332813 1.487937 -1.0872042 ]\n [ 0.04317502 1.104578 1.163194 ]\n [-0.18004632 1.6688244 -0.93271935]\n [-0.4501099 -0.9023597 -1.0872042 ]\n [ 0.77298915 1.2550397 0.4149357 ]\n [-0.9141449 -1.6970255 -0.46036395]\n [ 0.9969239 -0.4864998 -0.11371294]\n [-1.3606052 1.2422249 -0.705748 ]\n [ 0.00326559 1.3139434 -0.24791571]\n [-0.34188208 -0.31202832 0.9833013 ]\n [-0.57462597 1.562705 -1.0647002 ]\n [ 0.8494824 -0.15907599 1.8009835 ]\n [-0.7998905 -1.32231 0.9537321 ]\n [ 0.6524803 0.33845064 1.2951719 ]\n [-0.56836605 1.2100011 -0.28049257]\n [ 0.18089187 -1.4559611 -1.0872042 ]\n [-1.623553 1.6585592 -1.0872042 ]\n [-0.17415975 -0.01073752 -1.0872042 ]\n [-0.98303694 -1.5415283 1.1006839 ]\n [ 1.3575691 0.6647392 0.00671213]\n [-0.0844427 0.10994074 -1.0872042 ]\n [-1.5157208 -0.5087793 0.05986293]\n [ 1.6922613 -1.3191842 -1.0872042 ]\n [-0.49255013 -0.2305264 1.9139496 ]\n [-0.4133237 -0.6553324 0.26541045]\n [ 1.403482 -1.626872 1.8989218 ]\n [ 0.6482672 0.5928604 1.8943089 ]\n [ 1.4147216 -0.86602813 0.6760206 ]\n [-0.9977769 -1.1403672 1.2183361 ]\n [ 1.5612555 1.5263036 0.8731312 ]\n [ 0.33427444 1.3585258 -1.0872042 ]\n [ 0.78959703 0.6258518 -1.0872042 ]\n [ 1.647193 1.5389494 0.26820725]\n [ 1.6520663 -0.9544979 0.15787564]\n [-0.8981985 0.26270112 -1.0872042 ]\n [-0.46348047 -1.1958045 0.03478176]\n [ 1.1698154 1.0413039 0.46727204]\n [-0.21412747 1.4343011 -1.0872042 ]\n [-0.9114365 -1.099455 -1.0872042 ]\n [ 1.6776773 1.1396612 0.8925654 ]\n [-1.6490316 1.604951 1.2898847 ]\n [-0.17994563 1.5675006 1.649328 ]\n [-0.67182255 1.3321917 -0.9599271 ]\n [ 0.8859793 -0.6009441 0.46957043]\n [ 0.80626893 1.4575733 0.87130165]\n [ 0.6880999 -0.5677904 -0.9356087 ]\n [ 0.17044654 0.02198523 0.80693376]\n [ 1.4900576 -1.5555526 0.5700909 ]\n [ 0.8337863 0.2373203 1.8267239 ]\n [-0.39341125 -1.6852936 1.0625267 ]\n [ 0.70428693 0.50240916 0.610168 ]\n [ 1.3287998 -1.3226621 -0.2109939 ]\n [ 0.09754819 1.1935122 -0.8765232 ]\n [ 1.401146 1.0811613 0.6415966 ]\n [ 0.11785639 -0.9509119 -1.0872042 ]\n [-1.1778859 1.327069 -1.0872042 ]\n [-1.4291676 0.08889377 -1.0872042 ]\n [-1.3361169 0.67055696 -0.4948976 ]\n [-0.98283213 -1.5296903 1.6455082 ]\n [ 1.2435408 -0.47986197 0.7131769 ]\n [ 1.1456016 -1.1108934 -0.14255793]\n [ 1.2723835 0.87104595 -1.0872042 ]\n [-1.6301805 0.36085552 0.38856933]\n [-0.01753657 1.3964278 1.0471334 ]\n [ 0.6861892 -0.8066437 0.8264218 ]\n [ 0.95363003 1.386809 0.76791584]\n [ 0.61463886 1.361384 -0.98197764]\n [ 1.4394652 -0.32969862 1.1293987 ]\n [ 0.8951782 1.6366384 -1.0872042 ]\n [-0.12578121 0.03573678 -0.54109144]\n [ 0.7454611 0.7108382 1.5898201 ]\n [-0.28104115 1.4915869 0.71909153]\n [ 0.8117332 -1.0871763 0.70399165]\n [ 0.875463 -1.1718968 -1.0872042 ]\n [ 0.7759235 -1.4526292 -1.0872042 ]\n [-0.9246708 -1.2000642 -1.0872042 ]\n [-1.1916736 1.0475343 -1.0385329 ]\n [ 0.92031723 -0.7107105 0.44363803]\n [ 0.54094434 -0.8885709 -1.0872042 ]\n [-1.7240893 1.4713444 -1.0872042 ]\n [-0.6792525 0.30863348 -1.0872042 ]\n [-0.29569098 1.2997367 -1.0872042 ]\n [-0.10386071 -0.3774416 -1.0872042 ]\n [-1.7005589 -1.347155 -0.6648502 ]\n [-0.04791122 -0.30770075 -0.71131706]\n [-1.3554313 -0.14667907 -0.17263433]\n [ 0.90360105 0.65993583 0.31361812]\n [ 0.06614879 0.19003363 -1.0872042 ]\n [-0.41139793 -0.25447646 -0.6001085 ]\n [-1.6413002 -1.705693 1.6460582 ]\n [ 0.98221374 -0.6671115 1.2051163 ]\n [ 0.91368145 0.07832476 -1.0872042 ]\n [-1.2169262 -1.2671282 -0.95471025]\n [-0.95608467 0.53593326 -0.35885245]\n [ 0.16699314 -0.5506688 0.3650056 ]\n [ 0.35683995 -0.5551199 -1.0872042 ]\n [ 1.6108143 0.05953936 -1.0872042 ]]", "observation": "[[ 0.6717538 -0.6758344 -0.81063694 ... -0.01135222 -0.02366695\n 0.00489917]\n [ 0.7725012 0.00838946 -0.82190573 ... -0.01135443 -0.02366735\n 0.00495527]\n [-0.11988472 -0.42378557 -0.76029825 ... -0.01135838 -0.02365454\n 0.00521093]\n ...\n [-1.2555224 0.76748616 -0.4431007 ... -0.01135222 -0.02366695\n 0.00489916]\n [-1.3358554 1.407255 -0.3991886 ... -0.01135222 -0.02366695\n 0.00490979]\n [-3.3391526 2.0799906 1.5515062 ... -0.01135221 -0.02366694\n 0.00521053]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWV+zIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAGAAAAAAAAtThnvdRuvLwK16M8zgH2PHZtjD0K16M8C175veRYpLwK16M8OusDPfbFF70K16M8UQgJvvpQD70K16M8PL4VPoMhIz0K16M8QI51veCC5T0K16M8sUPjPcLVBb0K16M8msGEPaU1/z0K16M8v797O+Ww370K16M8cFDYveOLAz4K16M8w3Q4vTOOpb0K16M8Y+IBvn8nCT4K16M8o6YtPQC3bTwK16M8GfWvPMlY2b0K16M8cE8VPZXyEr4K16M8wSOvvadMDL0K16M8UlAQPjsbnTwK16M84M1ovZMNhj0K16M8TDrfvKOXA74K16M8M58gPX60Ez4K16M8191HvF/QFT4K16M8VG48Pf8p2T0K16M8BM+dPHdDqzwK16M8QfoYvuSRvL0K16M8w2DAPaCVbTwK16M84ncEPrv4sT0K16M8vC0KvmSdUb0K16M8Zc7jvT87E74K16M8qLCtPQXX4T0K16M89AVaPcNqDb4K16M8p09lPdcRET4K16M8WTDaPPkbLb0K16M81GCcu2VGsT0K16M8MLz3vXNTGb4K16M8R+BgPRPcWTsK16M8kHVevS1KdbwK16M80+IEPjd1Db4K16M8sZrCPG33sj0K16M8txxqPbHCAT4K16M8SnjWPTyWOL0K16M8Ylb5vXccEj4K16M8qinWPCAkqb0K16M87HjPvXCF2z0K16M8hBtJO1Wgqz0K16M8YlUFPjoC/70K16M8uWoPPhNDXL0K16M8VGM7PVYZ3z0K16M8D3c/PSptFb4K16M8gbChvRaKND0K16M8CNivPfkNrr0K16M8ejJ3PKLfDz4K16M8sMvyvXGETD0K16M8okn+vdvCW7wK16M8La0Ou4WUmz0K16M8xU9ZPFNvor0K16M813gCvQEV070K16M8rHfUPfzU3L0K16M8qsLAve240L0K16M8kjTfPatdeDwK16M8JM+ivMvCGD4K16M863JtPbrjAj4K16M8Sxa4vVVSyb0K16M8MDbcPUQ//70K16M8h7IHPjw/6DwK16M8+xIHvOdv1j0K16M8hO/wPNXoqLwK16M80SsSPpPmbD0K16M8Li7muwKUwj0K16M8QquTPRl3TbwK16M8p8G1vSCKC74K16M8UnSEPbXpaL0K16M8TBmsvVzED74K16M8mVifPJgv8TsK16M8bxEFPvWDmj0K16M8d5oBvkrVar0K16M8IstevY/6Br0K16M8AOAcvTYIqzwK16M8FHX9vfv35b0K16M8XabSPAqYqb0K16M8DUmIvGmJcToK16M816bgvAXiBj4K16M8uTpBvTMcm70K16M8dnOnvTttkD0K16M8x6HpPf4StD0K16M80cUhvWFqtD0K16M8qt2wvHxXv70K16M8u5pHPbcV6L0K16M85fREPBV19j0K16M8aDpxPfoo5r0K16M8+bvNPXuY+D0K16M89u4Nvk+h2z0K16M8031IPSkqCL4K16M8NpBRvVgokr0K16M821LcvPmB5LsK16M8lb4cPKM2Yz0K16M8EaTEvdJ/lz0K16M8a+b9vUpvOL0K16M8ZzENPUPQpzwK16M8s4ERPsAW7TwK16M8pLp8vYDcAT4K16M8XDRjPT6EMbwK16M8kqzbPT2S870K16M8zoMZvTb9mz0K16M8+oL+vKaftL0K16M8Oq0OPvXr3b0K16M8V4otu84WAr4K16M8Vq2fvadNAr4K16M8quzzPM2yu70K16M8CtafvXk75z0K16M81WakPTUX8L0K16M8RPYBvpdXi7oK16M8u+ZGvJw/GT4K16M8shUFPUOKMj0K16M86FwZvpvQ6r0K16M8LBcXO8an8TwK16M87ESDOxnBcr0K16M8K1gVPDBVDr4K16M8gq2dPfVDEr4K16M86AW/PEfcmTwK16M8/O/lPNsOtD0K16M8fyvGPeMO1joK16M8mB/HvTnAvz0K16M8DiQ/PUnTBj4K16M8Lk31vfEtrD0K16M8KJrnvXoY9L0K16M8GWxhvVIv0jwK16M8jh0BvmaT1DwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkuASwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAGAAAAAAAAL2xoO+hhCj77A0g9K3eSvTWdd70K16M8wJP+vSG0ob29lDg+WhsIPnG1XjsK16M80GS7PeYyvT0K16M83pU7PLmWQL1EIcA9orcZPVQM9D0K16M80Z1UvQOxFT4Dgas9KnvjPcH6gr03ARA+bxUMPq2Zs70K16M82zTkvTMqY7kK16M87ReZvRU+CT4K16M8syHgPUFM2j0K16M8LVvLPWXeKr2pZiQ+0tdsPb0Jwj0K16M8b3SkPAQ0qrw7/B49kgPUPVJM0L3CtAY+VXf3vF+UhT0K16M8Va3DvLrTAj4K16M8Dx+HvcH4Prz9oTU9+besPZkQAj0K16M8oDskvb/AuL2Pdxo9Ek5uPenSLT0K16M8z5BQvUYJ6byyLwo+8HPQvRCBGb7BrYE9CCwlu1gvo73lTQk9b/pyPffIZL1lNDU9sSrYPW167D0K16M8vzkKvlea+DoK16M8QVOivQU6rryTgh09cbX3PSrPBL5ZQR4+L7/Qvd+CsTxKb8M9PYGKvO9SqDwK16M8zlwYvl6q5D0lY4w9qSBHva0ATLwr+FM+EjjEveUX+rxxiUs+/tx6PZWoRj1zcAo9gfmLuyXDmb2aAyg+QKIGOmVXQTxoOkE96D+NPRarbT0K16M85YMLPhOepD2AHTk9kFGoPVw2lrwjUkQ+NSU7PfgmDL4PqMQ8UOXnvYadlL3oKc891bmzPCgKDDwl4DA+CTT5PT3gAb7Fmpg9KpCUPajamz0K16M8kf4JvXhf6zynafs9V4YovTsX5Ty4gMk9rpewPaYBzT3asAQ+/uoHPgf9bL0K16M84D8OPSZrtjwK16M8ii4Wvqt/hj32lrA9mYaqvQemtjsrLBM9wCLMPYS54z0K16M8je6KPU9oFL4aWV0+1k1iPcbAG7zAw0A+sa9qvale6T0K16M8vaXXPMZVyD1puDE9iOtXvblCEb6lfv08b14avcYTpz0c7h0+J1UGPV87mD0K16M8rKaTPNA4Fz7aC3M9vz0IPhpw5TsawAc9lQoLvpwhszsK16M8yisCPlfvbD0Nqw099onSvIg15b0K16M8ba6Zu/wC1j3Yah4+7YXFPK77AzzIn0U+k40SvZ6BiT3C7aw9rYCXveBbBzx+VDA+IJHPPaaMF74K16M8RscQuzmfcb0i95Y9V07yPfuxyzvwAR8+UiewvRUe1b28hBw+yDW8PRsnFT5IPCA+Q62vPTmFezxK24w97mbHvCMP/z03Lv094OYAPviYA74K16M830yRPRbxE75V3N88VeyhvPEssb3nQ08+598YPlL72T3VH4I9EJdhvbvlC758URU+5ZmOPZji9T0z7y0+5vsLvtPCCrzrkOY9TuENPV12x70/jRI+GeStPOE0rj2+JF89nnu0vUeteT2bfCE+2zq6PLXZpT0K16M8o+AcveKDXz06Wf09FkaFveYO/D0K16M8VOL3PF5MAr6Oc7g9hCQVPq46VDzRHOU9OfKfvX1fsT0K16M8XMRLPKXv/T1qmIU9LM2MPaezjz1jxQQ+rCVWPRVaprxlvf09fkoIPpPb1z0K16M8wiLtOh34nzwKpPo9DtDNPYtK7TwK16M80UAIPlK+LL1JNTU+xebQvfw20zwK16M8wyxmvf9gqb26BWc9pAPQPZUcbD0K16M8ftApPfj5Fj4oKSE9GTIUPmcwDb7BgTY9XIU2PY5U27uY4fY9/LjaPSqKIj0cgjI9fQBXPPjC0T14GC4+VT8EPmeJdDugZyY+XMrUvRguy733M/g9yKXrva1y0z0K16M8HesDvpGB1r15gkg9ugOMPYHb271kedo9CqJ4PRvg/jwD7QM+yEvJvbmU5z2Vglg+QGjmPasy0r0VMRA+0E4EPkVrBj4K16M8NCgMPhicjj0K16M8vVbZPW8RCL5+zY89PjQjPWJWeL3bST0+ieXHPe9Lx70K16M88BJgPfEQCb4K16M8b0KvPcqhrz2F9Vo+aR3YPXKx+boK16M85bMXvkW1Bz6IFwg9B2kGvtBmsr0MkaM9eplDPeANCbyMjNo9lGgOS4BLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWACYAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtThnvdRuvLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAM4B9jx2bYw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAALXvm95FikvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOusDPfbFF70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFEICb76UA+9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA8vhU+gyEjPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAQI51veCC5T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALFD4z3C1QW9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACawYQ9pTX/PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAv797O+Ww370K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAHBQ2L3jiwM+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADDdDi9M46lvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAY+IBvn8nCT4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKOmLT0At208CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAZ9a88yVjZvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAcE8VPZXyEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAMEjr72nTAy9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABSUBA+OxudPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA4M1ovZMNhj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEw637yjlwO+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAznyA9frQTPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA191HvF/QFT4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFRuPD3/Kdk9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAEz508d0OrPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAQfoYvuSRvL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAMNgwD2glW08CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADidwQ+u/ixPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAvC0KvmSdUb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAGXO470/OxO+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACosK09BdfhPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9AVaPcNqDb4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKdPZT3XERE+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABZMNo8+RstvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA1GCcu2VGsT0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADC8971zUxm+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABH4GA9E9xZOwrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAkHVevS1KdbwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANPiBD43dQ2+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACxmsI8bfeyPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtxxqPbHCAT4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEp41j08lji9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABiVvm9dxwSPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqinWPCAkqb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOx4z71whds9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACEG0k7VaCrPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAYlUFPjoC/70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALlqDz4TQ1y9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABUYzs9VhnfPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAD3c/PSptFb4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIGwob0WijQ9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAI2K89+Q2uvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAejJ3PKLfDz4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALDL8r1xhEw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACiSf6928JbvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAALa0Ou4WUmz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAMVPWTxTb6K9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADXeAK9ARXTvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAArHfUPfzU3L0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKrCwL3tuNC9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACSNN89q114PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAJM+ivMvCGD4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOtybT264wI+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABLFri9VVLJvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAMDbcPUQ//70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIeyBz48P+g8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD7Ege852/WPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAhO/wPNXoqLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANErEj6T5mw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAuLua7ApTCPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAQquTPRl3TbwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKfBtb0gigu+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABSdIQ9telovQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAATBmsvVzED74K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJlYnzyYL/E7CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABvEQU+9YOaPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAd5oBvkrVar0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACLLXr2P+ga9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAA4By9NgirPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAFHX9vfv35b0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAF2m0jwKmKm9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAANSYi8aYlxOgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA16bgvAXiBj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALk6Qb0zHJu9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB2c6e9O22QPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAx6HpPf4StD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANHFIb1harQ9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACq3bC8fFe/vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAu5pHPbcV6L0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOX0RDwVdfY9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABoOnE9+ijmvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA+bvNPXuY+D0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPbuDb5Pods9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADTfUg9KSoIvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAANpBRvVgokr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANtS3Lz5geS7CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACVvhw8ozZjPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAEaTEvdJ/lz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAGvm/b1Kbzi9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABnMQ09Q9CnPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAs4ERPsAW7TwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKS6fL2A3AE+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABcNGM9PoQxvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAkqzbPT2S870K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAM6DGb02/Zs9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD6gv68pp+0vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOq0OPvXr3b0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFeKLbvOFgK+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABWrZ+9p00CvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAquzzPM2yu70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAArWn715O+c9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADVZqQ9NRfwvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAARPYBvpdXi7oK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALvmRrycPxk+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACyFQU9Q4oyPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA6FwZvpvQ6r0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACwXFzvGp/E8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADsRIM7GcFyvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAK1gVPDBVDr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIKtnT31QxK+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADoBb88R9yZPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA/O/lPNsOtD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAH8rxj3jDtY6CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACYH8e9OcC/PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAADiQ/PUnTBj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAC5N9b3xLaw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAomue9ehj0vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAGWxhvVIv0jwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAI4dAb5mk9Q8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDkuASxOGlGgSdJRSlHUu", "achieved_goal": "[[-0.05645056 -0.02300207 0.02 ]\n [ 0.03003016 0.06856816 0.02 ]\n [-0.1217614 -0.02006192 0.02 ]\n [ 0.03220675 -0.03705402 0.02 ]\n [-0.13382079 -0.03498933 0.02 ]\n [ 0.1462335 0.03982688 0.02 ]\n [-0.05995011 0.11206603 0.02 ]\n [ 0.11096895 -0.03267456 0.02 ]\n [ 0.06482239 0.12461404 0.02 ]\n [ 0.00384139 -0.10922412 0.02 ]\n [-0.10562217 0.12846331 0.02 ]\n [-0.04503323 -0.08083763 0.02 ]\n [-0.12684016 0.13393973 0.02 ]\n [ 0.04239525 0.01450896 0.02 ]\n [ 0.02147918 -0.10612638 0.02 ]\n [ 0.03645271 -0.1435035 0.02 ]\n [-0.08551741 -0.03425279 0.02 ]\n [ 0.1409314 0.01917802 0.02 ]\n [-0.05683696 0.06545558 0.02 ]\n [-0.02724948 -0.12850814 0.02 ]\n [ 0.03921432 0.14424321 0.02 ]\n [-0.01219889 0.14630269 0.02 ]\n [ 0.04600365 0.10603713 0.02 ]\n [ 0.01926375 0.02090619 0.02 ]\n [-0.14939214 -0.09207514 0.02 ]\n [ 0.09393456 0.01450101 0.02 ]\n [ 0.12936357 0.0869002 0.02 ]\n [-0.13494009 -0.05117549 0.02 ]\n [-0.11123351 -0.1437807 0.02 ]\n [ 0.0848096 0.1102734 0.02 ]\n [ 0.05322833 -0.13810258 0.02 ]\n [ 0.05598417 0.14166962 0.02 ]\n [ 0.02663438 -0.042263 0.02 ]\n [-0.00477228 0.08656005 0.02 ]\n [-0.12096441 -0.1497324 0.02 ]\n [ 0.05490139 0.00332427 0.02 ]\n [-0.05431134 -0.0149713 0.02 ]\n [ 0.12977152 -0.13814245 0.02 ]\n [ 0.0237554 0.08738599 0.02 ]\n [ 0.05715629 0.12671925 0.02 ]\n [ 0.10472162 -0.04506515 0.02 ]\n [-0.12174679 0.14268671 0.02 ]\n [ 0.02614291 -0.08258843 0.02 ]\n [-0.10130486 0.10718811 0.02 ]\n [ 0.00306866 0.0838019 0.02 ]\n [ 0.13020852 -0.12451597 0.02 ]\n [ 0.14005555 -0.0537749 0.02 ]\n [ 0.04574902 0.10893504 0.02 ]\n [ 0.0467444 -0.14592424 0.02 ]\n [-0.07894994 0.044077 0.02 ]\n [ 0.08586127 -0.08498759 0.02 ]\n [ 0.01508772 0.14050153 0.02 ]\n [-0.11855257 0.04993099 0.02 ]\n [-0.12416388 -0.01341316 0.02 ]\n [-0.00217707 0.07596687 0.02 ]\n [ 0.01326365 -0.0793139 0.02 ]\n [-0.03185352 -0.10306741 0.02 ]\n [ 0.10374388 -0.10782811 0.02 ]\n [-0.09412129 -0.10191522 0.02 ]\n [ 0.10898699 0.01515905 0.02 ]\n [-0.01987416 0.14918058 0.02 ]\n [ 0.05797092 0.12782183 0.02 ]\n [-0.08988627 -0.09830157 0.02 ]\n [ 0.10752523 -0.12463239 0.02 ]\n [ 0.13251697 0.02835046 0.02 ]\n [-0.00824427 0.10470562 0.02 ]\n [ 0.02941108 -0.02061884 0.02 ]\n [ 0.14274527 0.05783708 0.02 ]\n [-0.00702455 0.09500886 0.02 ]\n [ 0.07210399 -0.0125406 0.02 ]\n [-0.08874827 -0.1362691 0.02 ]\n [ 0.06467499 -0.05686351 0.02 ]\n [-0.08403262 -0.14039749 0.02 ]\n [ 0.01945143 0.00736041 0.02 ]\n [ 0.12994932 0.075447 0.02 ]\n [-0.1265658 -0.05733231 0.02 ]\n [-0.05439294 -0.0329538 0.02 ]\n [-0.03829956 0.02087794 0.02 ]\n [-0.12375847 -0.11228939 0.02 ]\n [ 0.02571409 -0.08280952 0.02 ]\n [-0.0166364 0.00092139 0.02 ]\n [-0.02742331 0.13172157 0.02 ]\n [-0.04717514 -0.07573738 0.02 ]\n [-0.08176319 0.07052084 0.02 ]\n [ 0.1140781 0.08792685 0.02 ]\n [-0.03949529 0.08809353 0.02 ]\n [-0.02159007 -0.09342858 0.02 ]\n [ 0.04873155 -0.11332267 0.02 ]\n [ 0.01202128 0.1203405 0.02 ]\n [ 0.05889359 -0.11238284 0.02 ]\n [ 0.10045619 0.12138458 0.02 ]\n [-0.13860688 0.10724127 0.02 ]\n [ 0.04894812 -0.13297333 0.02 ]\n [-0.05116292 -0.07136601 0.02 ]\n [-0.02689498 -0.0069735 0.02 ]\n [ 0.00956692 0.05547203 0.02 ]\n [-0.09601606 0.07397427 0.02 ]\n [-0.12397464 -0.04502801 0.02 ]\n [ 0.03447094 0.02048505 0.02 ]\n [ 0.14209633 0.02894151 0.02 ]\n [-0.06170143 0.1268177 0.02 ]\n [ 0.05546986 -0.01083475 0.02 ]\n [ 0.10726275 -0.11893127 0.02 ]\n [-0.03747921 0.07616656 0.02 ]\n [-0.03106831 -0.08819513 0.02 ]\n [ 0.13933268 -0.10836021 0.02 ]\n [-0.00264802 -0.12704012 0.02 ]\n [-0.07796733 -0.12724935 0.02 ]\n [ 0.02977594 -0.09164963 0.02 ]\n [-0.07804497 0.1129064 0.02 ]\n [ 0.08027426 -0.11723176 0.02 ]\n [-0.12691599 -0.0010631 0.02 ]\n [-0.01213997 0.14965671 0.02 ]\n [ 0.03249139 0.04358889 0.02 ]\n [-0.14976847 -0.1146557 0.02 ]\n [ 0.00230546 0.02949895 0.02 ]\n [ 0.00400602 -0.05926618 0.02 ]\n [ 0.00911526 -0.13899684 0.02 ]\n [ 0.0769911 -0.14283736 0.02 ]\n [ 0.02331825 0.01878179 0.02 ]\n [ 0.02806854 0.08791896 0.02 ]\n [ 0.09676265 0.00163313 0.02 ]\n [-0.09722823 0.09362835 0.02 ]\n [ 0.04666524 0.13166536 0.02 ]\n [-0.11977611 0.084072 0.02 ]\n [-0.113087 -0.11918731 0.02 ]\n [-0.05503473 0.02565733 0.02 ]\n [-0.1260893 0.02594919 0.02 ]]", "desired_goal": "[[ 0.00354649 0.13513911 0.04883192]\n [-0.07151636 -0.06045266 0.02 ]\n [-0.12430525 -0.07895685 0.18025489]\n [ 0.13291684 0.00339827 0.02 ]\n [ 0.09150088 0.09238224 0.02 ]\n [ 0.01144931 -0.04701874 0.09381345]\n [ 0.03752864 0.11916414 0.02 ]\n [-0.05190832 0.14618306 0.08374216]\n [ 0.11107476 -0.06395484 0.14062963]\n [ 0.13680051 -0.08769546 0.02 ]\n [-0.11142894 -0.00021664 0.02 ]\n [-0.07475267 0.13402589 0.02 ]\n [ 0.10943928 0.10659076 0.02 ]\n [ 0.099295 -0.041716 0.16054787]\n [ 0.05782301 0.09474514 0.02 ]\n [ 0.02007505 -0.02077676 0.03881476]\n [ 0.10352243 -0.10170807 0.13154891]\n [-0.03020827 0.0652244 0.02 ]\n [-0.02388636 0.1277608 0.02 ]\n [-0.06597721 -0.01165599 0.04434394]\n [ 0.08433527 0.03175411 0.02 ]\n [-0.04009593 -0.09021138 0.03771168]\n [ 0.05817992 0.04243747 0.02 ]\n [-0.05091935 -0.0284468 0.13494757]\n [-0.10178363 -0.1499064 0.06331969]\n [-0.00252032 -0.07968014 0.03352155]\n [ 0.05932086 -0.05585572 0.04423942]\n [ 0.10555018 0.11546788 0.02 ]\n [-0.13498591 0.00189669 0.02 ]\n [-0.07926036 -0.0212679 0.0384546 ]\n [ 0.12095154 -0.12969652 0.15454616]\n [-0.10192715 0.02166885 0.09542711]\n [-0.01690733 0.02054736 0.02 ]\n [-0.14879152 0.11165307 0.06854848]\n [-0.04861513 -0.01245133 0.20700137]\n [-0.09581007 -0.03052897 0.19876648]\n [ 0.06124591 0.04850062 0.03379865]\n [-0.00427169 -0.07507924 0.16407624]\n [ 0.00051359 0.01180062 0.04717484]\n [ 0.06896955 0.05802449 0.02 ]\n [ 0.13624533 0.08037963 0.04519415]\n [ 0.08218682 -0.01833647 0.19171958]\n [ 0.04568978 -0.1368674 0.02400592]\n [-0.11323035 -0.07256608 0.10115415]\n [ 0.0219392 0.00854734 0.17273004]\n [ 0.12168128 -0.12683196 0.07451395]\n [ 0.0725406 0.07610065 0.02 ]\n [-0.03369004 0.02873205 0.12276011]\n [-0.04114374 0.02796518 0.09839004]\n [ 0.08622681 0.1001008 0.12958089]\n [ 0.13273236 -0.05785849 0.02 ]\n [ 0.03472888 0.02226789 0.02 ]\n [-0.1466619 0.06567319 0.08622544]\n [-0.08326454 0.00557399 0.03593079]\n [ 0.09967566 0.11119369 0.02 ]\n [ 0.06783781 -0.14492916 0.21616021]\n [ 0.05525001 -0.00950641 0.18824673]\n [-0.05729646 0.11395008 0.02 ]\n [ 0.02632415 0.09781985 0.04338876]\n [-0.05271485 -0.14185609 0.03094418]\n [-0.03768772 0.08158068 0.15422863]\n [ 0.03279605 0.07433199 0.02 ]\n [ 0.01802381 0.14767766 0.05933747]\n [ 0.13304804 0.00700189 0.03314219]\n [-0.13578255 0.00546665 0.02 ]\n [ 0.12712017 0.05784544 0.03458695]\n [-0.02570055 -0.11191851 0.02 ]\n [-0.00468998 0.10449788 0.15470445]\n [ 0.02411171 0.00805561 0.19299233]\n [-0.03577955 0.06714176 0.08443786]\n [-0.0739759 0.00826165 0.17219731]\n [ 0.10135102 -0.14799747 0.02 ]\n [-0.00220914 -0.05898974 0.07371356]\n [ 0.11831348 0.00621629 0.15528083]\n [-0.0860125 -0.10406128 0.15285009]\n [ 0.09189945 0.14565699 0.15647995]\n [ 0.08577969 0.01535159 0.06877764]\n [-0.02434107 0.12454059 0.1236233 ]\n [ 0.12588072 -0.12851322 0.02 ]\n [ 0.0709474 -0.14447436 0.02732674]\n [-0.01976601 -0.0865115 0.20240746]\n [ 0.14929162 0.10643639 0.06353728]\n [-0.05507571 -0.13661854 0.14581865]\n [ 0.06962947 0.1200611 0.16985779]\n [-0.1367031 -0.0084693 0.1125811 ]\n [ 0.0346387 -0.09739373 0.14311694]\n [ 0.02122693 0.0850618 0.0544784 ]\n [-0.08812641 0.06095627 0.1577019 ]\n [ 0.02273314 0.08098165 0.02 ]\n [-0.03830017 0.05456913 0.12370534]\n [-0.06507508 0.12307529 0.02 ]\n [ 0.03025929 -0.12724444 0.09006415]\n [ 0.14564711 0.01295344 0.11187137]\n [-0.07809872 0.08660791 0.02 ]\n [ 0.01243695 0.12399224 0.06523211]\n [ 0.06875071 0.07016688 0.12965922]\n [ 0.05228202 -0.02030663 0.1238964 ]\n [ 0.13309667 0.10539927 0.02 ]\n [ 0.0018092 0.01952749 0.12238319]\n [ 0.10049449 0.02896621 0.02 ]\n [ 0.13305975 -0.04217369 0.17696108]\n [-0.10200266 0.02578305 0.02 ]\n [-0.05619503 -0.08270454 0.05640195]\n [ 0.10156944 0.05764445 0.02 ]\n [ 0.0414586 0.14743793 0.03934589]\n [ 0.14472236 -0.13787995 0.04455734]\n [ 0.04456078 -0.00669343 0.12054747]\n [ 0.10679814 0.03968254 0.04358111]\n [ 0.01312268 0.10242265 0.17001522]\n [ 0.12914784 0.00373133 0.16250467]\n [-0.10390159 -0.09920901 0.12119287]\n [-0.1150623 0.10324607 0.02 ]\n [-0.12882657 -0.10473932 0.04895255]\n [ 0.06836648 -0.10735226 0.10667685]\n [ 0.06070141 0.03111272 0.12883382]\n [-0.09828907 0.11307663 0.21143563]\n [ 0.11250353 -0.1026357 0.14081223]\n [ 0.1292069 0.13126858 0.02 ]\n [ 0.13687211 0.06963366 0.02 ]\n [ 0.10612247 -0.132879 0.07021616]\n [ 0.03984474 -0.06062926 0.18485205]\n [ 0.09760577 -0.0973128 0.02 ]\n [ 0.05470556 -0.13385369 0.02 ]\n [ 0.08557593 0.08575781 0.21382721]\n [ 0.10552485 -0.00190501 0.02 ]\n [-0.14814718 0.13252743 0.03322557]\n [-0.13126002 -0.08711016 0.0798665 ]\n [ 0.04775379 -0.00836512 0.10671338]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n ...\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CmiR+EytV8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmlky8jAzpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjOHVG0/odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmh0kcKgIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmhk3os7MgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmkdxyXD4dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmjTnsTnJUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjL26ClJpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiRsqBmPHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhOr9uP3jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmOJ6po9LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmileqaPS2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmnsRvvSc9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiLlXaJyidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmh9Us4DLbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmGjIzWPMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhHfAKv3bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjybaAWi2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiYQlKK51dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlrZ7XxvvdX2UKGgGR8A0AAAAAAAAaAdLFWgIR0CmjH99tuUEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmZvPTodNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlQrYXfqHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhSxwQ176dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmnW3Mpw0gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmj2QMhHLBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmihabvw3HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhmzfixVydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmCrIHTqjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmj6v5gw49dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmog3YDklvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmiBf4qPOqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhppUxVQzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmpaTi83+/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmkc1oQFs6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmo6GrS3LFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmzNwzch1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmC1W8yvcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlJqoQ4CIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmk57wjMV2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmk2E6DGtIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmoUu9FnZkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmndmFJxvOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmmsfj0cwQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmln0X531SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlTKB/ZuidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjdotL+PzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmosfAj6eodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmoJOez2OAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmnrT4DcM3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmuOLiuMddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmmWPT5O8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkKrCemNzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmoZaBy0a7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmoAvYODradX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmnALbQC0XdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmkQqHoHLSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkMpBgNPQdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmkV5DZ13ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjKs9r434dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmirLHdXT3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmpZVCXyAhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmodCiAUcodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmWKrzXjEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmwagElmfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmfyRbKRudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlTKA8SwodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmp6bP6be/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmoJ6ScLBsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmmt7ulXRxdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmmlUq6OHWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmEuM+/xldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlFN3GGVSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjDlIEr5JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmi3Uh3aBadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CminVQqI8AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmpxcn3L3cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkQbwSamXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmYIqLCN0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlRloUSIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmqUOX/o7ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmprfkWAPNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmunxSYPYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkMRbjcVQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmkIaj3225dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmpfJ2ll9SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmpNUxubZwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmoRbrTpgUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmpvbihnJ1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmo6xoZhrndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmoKxk3CKrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjoU3n6l+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmk8LGBFuvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmndHTI/7jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmmjSj59E1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjWXm3fALdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmlOmDUVi4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmjvyKekHldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmqSj0163RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmnKb8WKuTdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3125, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVbAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRfrwPMm99bipsddv+S0hbnACMA2luY5SKEXuTQFe5V5ihlfhFJtryKpIAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 128, "lr_schedule": {":type:": "", ":serialized:": "gAWVbgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWWM6XFVzZXJzXENsYXJhXGFuYWNvbmRhM1xlbnZzXGd5bW5lbnZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}