{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000018F40BDCB40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500160, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698039664567778500, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWV+zIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAGAAAAAAAApqm6vzZkOkAkLqLAfrhAv4czRz8V91E+1uEovimtNz/J0lE+6ZYAv96SXz/P0FE+6zcLv+Vkib7lyVE+nXYFvNH2Br9+0lE+QqFlwLNdCkA30FE+qPVvwBEeasAMLqLArQtHv00g+T670lE+rDAcvbenD75k01E+L9EZPyv2AT9+0lE+IM9svnH2BL9501E+boiPO+gEEb/P0FE+AkNsvjn8hcAhL6LAS4wAP6dDxD4G0lE+49ZQwM0kzL4U0VE+KYIDvq1Yjr4V91E+HQY7PysSZz5+0lE+TM4fv+A40b5+0lE+b1d0P7ElPj+l01E+LuyAP9ztzL2u0lE+9xIcvjXZir8X1FE+LvkZP7KDTT1+0lE+zbKzPxc83L6i01E+85BEvcoJLb9001E+HoImQOPeCT9XG6LAipNCv545pb5+0lE++xFaP3yrDj/f01E+5AauPprC1b5+0lE+1odzP3c4c7270lE+xJwoPgqP6r2401E+V/mCPypHDj/P0FE+EjdZP8V2Ib9+0lE+IdiKwLD+5D/i01E+PX5ZP42GNL/P0FE+Hm5oP53u5j5k01E+awGPvg7RGb+E1FE+Ldg2PwWtBL/90lE+Njo0Ph3q8r670lE+87LLveiraT9k01E+ZPT9Pj98kT5k01E+B3n3vlhJ9z1b1FE+tKuCPxjHBD+D0lE+E9AXP2gOVr8c1FE+nZmKvUGcAr/P0lE+RSdOv8RV3z6C0lE+NlTFvtpRJT9k01E+V2HIvqiP673w0FE+GTcMwEZSe7/F01E+6nsTvyLWEr/6dlA+6LvVvkH1UT4j1FE+80Auv4xKGD9e1FE+UDMvvpLBmT2H0lE+hDMlPwUGdL5/1FE+o4sbvwyVgT9+0lE+3eP9Pm9zmz/K01E+DXNBvyxVdz7a01E+EtVRP5LQE7/P0FE+iI3BvoZQEb9k01E+oT6BP3flTT9+0lE+gzNdvq0WOL9k01E+UJZVP02Trr5k01E+IfQ7v5K8Dj7a01E++plWPzcdU78T01E+35CFv2/18T5Yp1o+WDMRP4WEBr/P0FE+Il+sPddxDz7P0FE+SRlevleZfT9Q01E+0YtvvZ6Rez+201E+CLIqvu+KQj/j0lE+PPDPP1OMQr/CT1E+RjqavmfQPr/P0FE+egG3PuTnPD2K0lE+XY2SPp5taz/g0VE+IXwnv0j78D421FE+IAgcv3cuDr8V91E+kZqqPt4Klz110VE+4Ay0PnqhJD+70lE+Gu0zPuWPwr5k01E+oZxiwCQCVMCDeDfAN0EuPa/gJb9q1FE+oDRQvzhyusALLqLA6NwqviyrhT7P0FE+wvQKP+CKhr6B1FE+6bMlv2HCxL/B01E+gzZqP5ejPb+70lE+S933PiU8xz670lE+NiTiPv3SDb/s0FE+m1ORvtArIL9+0lE+IQcLv4I1rb4M01E+TUOKPpVRHj3htFE+ZTtqP5RQW7+70lE+1sxkP3aAS77P0FE+pKkYP5JYx76201E+HYSxPlMWyz270lE+1HtAv086W79+0lE+9P27PjHVgz7101E+MxmVv4EqXD/K0lE+zMzGvp5Sr7/d01E+QliUvw4u1r5xhJk+e8hFwBLWOz8W01E+4CJQv55Xkb5lyFE+0G1Bv6T5cj670lE+u1wJv9aNxbvP0FE+RnQgP76TJL/P0FE+BjZSP5xvhD1+0lE+3JuiPiBMkD6201E+fMwgP6UPk7/F01E+wZWoPuKX0T6p01E+eFWPP0Q7KD/X01E+jg7CPjByFj+x01E+oW7APveRBj9k01E+fXocwGjpoD+E01E+dIUyv5kEgL1T01E+rztrvg4hMT/a01E+21QHP6H5Oz+70lE+TDGEPd8VEb9k01E+w40Vv+i/Nj8r1FE+AMNxPmvdV7xk01E+OmKbvdP3Tr5NzFE+KCxjP5X3wD1l1FE+vDU9vyGohL7P0FE+Hdl/wJ3C/7+201E+9ibHPp6sYj+mz1E+ISECvzZbzb/a01E+mDvbvh8UMD9R0VE+LFH7PaURyL7L01E+qGE7v2GQwD5U1FE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkuASwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAGAAAAAAAAC8TMvukvpT8lIli+g12bP4dznT4x34q/P6mePqK9j78x34q/W9HHv1P2cL8i6ue+p642P7VyMD+4ja0/G7hQvyXJyj8x34q/y/aNP+RP3L/CfpA9kMoXv29UfTyGUbk/OBrsvsjxIr1ngGM/eiqFv2owwb821sY/zT+dP4qnrj8x34q/mI7Wv9odyz/Nqfi+CIyZPzACgz8K3OI/7EubP+s8gr8x34q/tFGxP5IlXr8x34q/q0uoP52dmr98Bb8/v0c8P1dEOb95++w+ZB9SPxj4QL8x34q/56IHP+vyej+WJ5E+8ZOlPdSm5Ds/3ba+vgayv1gqpL8x34q/AYebPn7HtT323te+hGMEv5KU1z8JVAq/PVjWv1+K0j8zau4/tQSivxJREz888vm9F16OvsAiPj6J39e9dCfTvphnnr6a3Qy/BXtvP7+tzL8x34q/IL6JP5jQjj9d8GY/R/+JP6ICRD8x34q/GslYP9BZ47w8noi/3gXbvuiAZT8LaJg/fU60v4eY1z5Dql+/y30hPJ23v78x34q/h7EtP2dwHT4x34q/1htmPy/OvL9YD84+xMseP8iavr58P3+9n1qBvsU/uj8BzxS/zNawv1QnBb9CuNE/RYfLPvsCOD8x34q/UtGqP87ozb8x34q/A0cCv/q2G7+KNQK/j+WKuzUbuj2Pb4G/bROMvyCchL4x34q/3O6EP/c1Ob9Ds6Y/+BzIP9KM9L7LoI4/uUMxP8Huvj5H52K/9hVNv0paoL/GOgE9CQ6jP9OAhr9H6z0/c1ECvz3pcr+sZWg/6diFPzQBiz/YV9M/DBGovwCX7b74NCK/QNnrPnriKz4cKMO+3oqaPSwMz74gECi/IyfXvzH7fb8x34q/XvCAP5bkFb1phmO/urRivuN/eL8VKiy/RlxrPyiJSb4x34q/NJy0PyZEwz/8mwk+6CiLP8X9GT/TzFw/MaQ4Pwg9J771tTo/M9yWP0u9kz5gR6Q8oQN/Pw0UWL5EO26/PFo2v8lUFj8x34q/keKlP0xMOz8x34q/0Grev+ONqL8x34q/FJtiP16TzL6zxa2+sHDNv+TJtr/GlcM+wPyWP8Dkyz4R+ia/K8GJPtGVMD8x34q/a4Ynv1P80b8x34q/CulEvyWj5r4x34q/42Ydv0cvjz8x34q/VkPHP4jXkz8qWbk/0dHZv23Aqz8x34q/VVKlPyfEor8x34q/7r0nv79JPb8wRt8/SDwyvl5TrL++h9g/qr+PP7eVKb426Sa/5aflvj+xtL96Ig0/FRgrv3qWeL8HfYQ/Ce1GP8XsiD8x34q/sWmpP2tBKj8x34q/TtLCP1K3lb8x34q/wfjEP8UaJb4okAk/RF2Lv7tlsb9iuyW/ufzMv8MHbT9KEkW/YLZ/v/LWOT7VrkQ+oW/Yv+vJv71i1s4/2Cgzv8ZTl7+XEok/bmSLPyc/3r/wU9M/9BDAvrVueD8x34q/9Fh7P5ruS77wal4/lDLNPnKs1b7xVxO/2GELPYWtbT8HQ7I/4zqdP+4Mmj8/z5i+WUpJP3k/oj8x34q/Qx6rPnw7d798Bti+K/atP6MqUb/Bq0g/1mC5vmhJ570QvpI/xsWlv3hQQ76paCo/f8iVP7cRtb/Z1/A/hfGiPuFMz7+pU4k+ADuHPUdznj8x34q/CxBxv6RrlL8x34q/Rue+v66igz8m80w/O1rHv7NtQL6T7uc/+OvVPyB2iL9LnUq/T+Cwv3DQKb/lpVk+Q7RUP72AMD4x34q/Z7rFPtSs3T0x34q/gAS2P8fYvL9nA+q+NxUGP5rvPr8x34q/C9bUvDcImD8ZS8i+cWBUPobNyT4x34q/Di0dvzoFzbyeYmU/jkhOP9O+vT8eHpc/+SKQPmKWdb0oiB0+1Y/Lv04byr9sJdQ/mfA8P0iMqL4x34q/MS0ivnT+Qj8x34q/OZ4bP38EkT+45NW9BcgVvyXHcL+MbRg/hh2Vv7kU4r6Atew+1IrlvrknmD3c8tU+qFumO9LRLD8CJxa934WQvt/V8j4x34q/djuuP8IMwr9x3OA/lGgOS4BLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWACYAAAAAAABT1jrArlPbP69OR7+Uiv+/OiS3P6V9dj/NQaQ/pqm6vzZkOkAkLqLAcPXbQNYEBz2v/yy/MvTBPUlAfT24/8E9/mWUvEitPbxL2nc8lL1+PjX0oL3z4Rk+ySIKPqaqNbw2CAM97FZwv364QL+HM0c/FfdRPo85Kb0U/gU9JF37vOYBwj1POH09hvXBPZz0k7z+/ju8PHB4PKM1Dj/irmQ/rDlXv3qylL6Y1+Q9Pp65v6gEcL/W4Si+Ka03P8nSUT55/yi9LEQGPf0b8rw2d8I9a2J8PW7zwT3L0JO80uU7vFKUfTw1jAk9QPWxPugkEr9h3T0+pszbvnd8iz+P+qQ/6ZYAv96SXz/P0FE+jZ4ovVEiBj0lavy8GcPBPUcpfT2G9cE9kPSTvP7+O7xLwHc8CS7DPcMUeL1mrsY9qKxrv35BTj0F5zm+nlZwv+s3C7/lZIm+5clRPqYWKr2plAY9yWX7vAT9wT1HQ3k9YZ/DPTdEVbytkDa86d13PIZA4j4m+Iq/wcY5P50vtj9OM9Y/DfeKPiBWcL+ddgW80fYGv37SUT7rQym9u40GPb2r/LzzA8I9l+98PYb1wT2c9JO8/v47vHjidzz+Khy/D/z0P6X+cb8H8JE/ru7mPZSclz1JVnC/QqFlwLNdCkA30FE+t4kovSnXBT1osSzADwfCPdvhfD1M9cE9PveTvFEIPLy0Fnk8iFdbv3c7IT+ztts9oqnrPlu/kz+732s/YUmhP6j1b8ARHmrADC6iwI85Kb3zs7rAExSHQLXMwT1IAnw9ybnBPV++iLwf0US8TzV5POwog73/1Zq+Oko/vzEKP79Y9kU/5pXNvwtTcL+tC0e/TSD5PrvSUT78dCm9LrcFPTaN9rwXjcE9zwp+PYb1wT2k9JO87v47vDCVfTz5GXS/kG4Qv5G0cL6IH4S/8GqAvywTir83SKE/rDAcvbenD75k01E+b1opvfQyBj0sBfi8W0DCPUzUfT2G9cE9mfSTvO/+O7wSrHs8LgnuPnN9g77kG+W+/M0IPeFYrz/9ku2/VjBwvy/RGT8r9gE/ftJRPutDKb25jQY9Ze77vPQDwj2W73w9hfXBPZz0k7zV/ju8huJ3PIebOT5XgRS9cHY8PkpHAT5/vk4+nYBOPwlWcL8gz2y+cfYEv3nTUT6wHym9IcIFPbSV+7zOu8E9haV8PUHywT0capO803Y7vPkzdTw0Lxi+9QUnvp4KAj8LvTI/r4rdPzlG5L90VnC/boiPO+gEEb/P0FE+jZ4ovVEiBj25A/y8GcPBPUcpfT2G9cE9nPSTvP7+O7xYwHc8dOWCv0m8tL7mJL4/7Vacv6x5Qj+7Quo/tCpvvwJDbL45/IXAIS+iwNrmG73MAs88H1vFvgc+iT43wS3AGuPGPRmiUTwHbUO9e+xBv7Awnz6NrGA9wNp+PirDB714e/M/iFCGPtZWcL9LjAA/p0PEPgbSUT75ZCm9yHEGPSZw+7xOKsI9rz98Pcogwj12v4y8sNg0vJ3hdzylYkK/CLQVP8kuU79FNw4+OUkwP5OYsb9qX4I/49ZQwM0kzL4U0VE+3sopvYwkBj00ZmU/OwHCPU1OfT3X8sE9ACKUvPJVPLwG1Hc8lL1+PjX0oL3z4Rk+ySIKPqaqNbw2CAM97FZwvymCA76tWI6+FfdRPo85Kb0U/gU9JF37vOYBwj1POH09hvXBPZz0k7z+/ju8PHB4PD1ZVT9zVRS/l2nHPdEc9b5HnHO+6yADwLdRgj8dBjs/KxJnPn7SUT7rQym9u40GPaRp/LzzA8I9lu98PYb1wT2c9JO8/f47vH3idzyRinU8LlEIv4Yn5b4/5Bc8+uekPgXY7L82U4I/TM4fv+A40b5+0lE+My8pvW1uBT26+fy82v/BPQiBfT2G9cE9nPSTvP/+O7xz4nc8VtAYP09Q0j7U2CK/Vk9Av4WHk7+kwIW/mPqkP29XdD+xJT4/pdNRPjEcKb0D/gU9Cb38vN0Bwj3MgX09TxfCPYT2lrwsADy8WW94PHd12T4fofk+GKk1P2iFIj+2D2U/RBs9P/VWcL8u7IA/3O3Mva7SUT7G/ii9HEkGPcLj+bzkc8I9PWR8PZr3wT0x5JO8VIY8vNKVfTyrRwo/jAEYvxPTT79AnIm/hnudPr5x3b8V+Jg/9xIcvjXZir8X1FE+ny8pvYQvBj2r+gJAr/nBPfQZfT1z9cE9SvaTvEL/O7yOI3g8Iwc9PVc6yr8INVk/zNChvuqlYr7VwJQ/f/ykPy75GT+yg009ftJRPjMvKb1tbgU9AAH9vNr/wT0IgX09hvXBPZz0k7z+/ju8cuJ3PLyabL9bXfa+uIwqvyXdxL4jzDO8Qd44PxbspD/NsrM/FzzcvqLTUT7OLSm9uEwGPZJI7rtEe8E9x+R9PW27wT24QJq8Do9SvKrDdzxUlWe/z4E8v5mSXL64FQK/zf9svqaejz/3+6Q/85BEvcoJLb9001E+rhspvd3HBT3A/wG977fBPX6vfD378sE9UNKTvDAxPLwUNXU8Ue+2PUvvmD6ZMC+/HE8CwFaW7b7vUVS+foekPx6CJkDj3gk/VxuiwFHHIz4azLpArNZUwOKEdkBVCCo+LHmVv6cclryEksDAmajcv76kXryf+qy8HALfvq6lWzy3jJY/k3Hmv1dTgj+Kk0K/njmlvn7SUT7rQym9uI0GPevm+7z1A8I9lu98PYT1wT2c9JO8o/47vIbidzw9F+e+y/52vTPZFL8WZbK+7CeCPyhdgj+ABCu/+xFaP3yrDj/f01E+0QUpvWQbBj226/q8qDvCPch4fD02MsI9lqmJvHk0LrwgJXo8ri/ivtQuur/+6zC/4hU/wEfySz9YhAA/d/ykP+QGrj6awtW+ftJRPjMvKb1tbgU92nv8vNr/wT0JgX09hvXBPZz0k7z+/ju8fOJ3PBtPkz91nfK9Upa4vrvYhj6jisg+NmZwvX38pD/Wh3M/dzhzvbvSUT4b/ii97UQGPbX48LysdsI912V8PYb1wT2V9JO8Dv87vA+UfTzu1T4/ZniWPs5cBz4JBFG+5Odrvxy35r+fUYI/xJwoPgqP6r2401E+Ei0pvVpIBj0lqN6+npzBPbYxfj0PtsE94WidvK7DTLyOqXc8xXaHPszXLj+w4KQ/VRiBPysPlT6SKQPAW1Zwv1f5gj8qRw4/z9BRPo2eKL1RIgY9V/D7vBnDwT1HKX09hvXBPZz0k7z+/ju8W8B3PJEOOL4fTx2+E3o1vwsz8L9CTMO/D+l9v1xTgj8SN1k/xXYhv37SUT7rQym9u40GPbEz/bzzA8I9l+98PYb1wT2c9JO8/f47vG/idzzNh5A/uQcZvpg2Zb88SAc+DYaev3X0Dz0xfKQ/IdiKwLD+5D/i01E+jzkpvfOzusAhyfo+mBnCPdEUfj1hMMI9MqWfvBnLN7ym3Ho8e1OEvuoXfT2PoMw+lgPOP2jyUL9DHFM/rK1Nvj1+WT+NhjS/z9BRPo2eKL1RIgY9ypz9vBvDwT1JKX09hvXBPZz0k7z+/ju8IsB3PFor4j7Vk44/YEqyP3E+PL8mNuc/g6J8v+ZWcL8ebmg/ne7mPmTTUT5wWim99DIGPbRV+LxbQMI9TNR9PYb1wT2X9JO89P47vB2sezwFXLc9M9bzPd2ga788X4o/kKCJPjQVhzyTUnC/awGPvg7RGb+E1FE+jzkpvan+BT0dqvu8gAHCPVA4fT3s9cE9p/STvBESPLw8cHg87WeSvmqBKL97FjS/7N+9vlhuzL+jG5M/c/ykPy3YNj8FrQS//dJRPmwEKb0vQQY9kAr5vF95wj0RVnw9suvBPdVPk7ylgTu81ZV9PGpQfL+G144+E9/uvkEYhT9a0fQ+Xgatvj0AK782OjQ+HeryvrvSUT4T/ii94EQGPZ8v67yhdsI94GV8PYb1wT2V9JO8Dv87vOKSfTwCZVs+NzijvhKVMr/UnVY+xe6KP0hJlz+K7KQ/87LLveiraT9k01E+a1opvfwyBj1BXfS8WEDCPULUfT2G9cE9l/STvPT+O7yWq3s8AmmyPaJoRz8WoCS/I6tPvpgklT940VK9XnBvv2T0/T4/fJE+ZNNRPmpaKb39MgY9PEL0vFhAwj1C1H09hvXBPZf0k7z0/ju8kqt7PPasnL7z6XK+eQJCv3x1Mj+ivZi/y/StP69oVb8Hefe+WEn3PVvUUT7tMym9Bv4FPXPX+7zaAcI9bUZ9PfX7wT30h5S8xgA8vFpveDzrMOC9GYH8vppStr5Ifh0/lUeAvtJ+gj8X+qQ/tKuCPxjHBD+D0lE+60MpvZqMBj3QlPu8ugTCPZXvfD3C9ME9nfSTvPbZO7yK4nc8kiHVvjbLpL6RZVS/p7UcwD/voD3k5yo/guykPxPQFz9oDla/HNRRPlBlKb3E4AU9wOL6vCTIwT3bC349ASnCPYURn7yLyUm8IyV6PBXbmT5PmYQ/ddopPWogg77YqaK/fZFvv5ggK7+dmYq9QZwCv8/SUT5Amt7ALGsGPQAoZr4OU8I97IB8PYb1wT2h9JO8/P47vNv4dDxtnoY+OyZjPTB9ab9mWjY+q+CRv1eLtzxgvIE/RSdOv8RV3z6C0lE+My8pveFuBT1lFP28iv/BPQiBfT039cE9nPSTvOoNPLxw4nc8b+lBP9jsCj9fYGi/3+TdvSIMoD7q6TM9vH1wvzZUxb7aUSU/ZNNRPmlaKb3/MgY9eE/zvFhAwj0/1H09hvXBPZj0k7zy/ju8cqt7PKE3tr6UDh6/nUFrvjw0KkDSsME/gzu7vrTKYL9XYci+qI/rvfDQUT7Voii9UCIGPZet/LwZw8E9kR59PZbwwT0shJO88/47vCzAdzz/F/K9spd8PqK6ar9EILg/Wj/BviYCtrynUjO/GTcMwEZSe7/F01E+g6JaQKcSBj34tOE+nuTBPcj6ez2gusE9bFqIvMU0Qbzkp3k8cn7OvoR/9T4cnxe/ahEDwOBexr8j/7C/W4iGP+p7E78i1hK/+nZQPtGhWkDvdmE8E25QwMPLEsAzkmbANx73Pe+uNj3sqHu+T4wCwF0yA7/hLz+/LSdcvxGbir9SXD2/20osP6cDK7/ou9W+QfVRPiPUUT6LQym9PS0GPTvG+rz+9sE9nyV9PWLzwT2d9JO8WJc7vA43eTyTVX2/Dta+vsPkO78LMBrAE4RfPl0ePj93/KQ/80Auv4xKGD9e1FE+CTYpvR0BBj3Xxfi8z//BPSFBfT2l+8E9ElGUvLxiPLw8cHg83gKxPjb6vD5Z9F6/eVXqvgH90D3jR+a/Km4zv1AzL76SwZk9h9JRPjMvKb0pcAU9Vmr8vKf+wT0JgX09WPTBPZv0k7wFODy8euJ3PKEhcz/+Vsw92NdXv3vd6j5/27i/xmSAP8D6pD+EMyU/BQZ0vn/UUT6fOCm9Nf4FPcHb+bzhAcI9sjp9PZ/2wT10DZS8KP87vDhweDyf/pk9fpBcPNhlar5kF4I8RuLDv463mj+Do4s+o4sbvwyVgT9+0lE+My8pvW1uBT3C9vy82v/BPQiBfT2G9cE9nPSTvP7+O7xz4nc8Ew4MviPjgj85md++2Mesv7MN1T/MF0U/Wulnv93j/T5vc5s/ytNRPo85Kb3sy7xAxTVdPUiAwj31JHw9O83BPbH6krwwqja8SNlyPHZRCD5gsS++pH9qv6+wZT9oWom9/sNmvJ/7oD8Nc0G/LFV3PtrTUT4xBSm9ZBsGPZjE+LytO8I9W3p8Pe4ywj02uom8WDMuvL0lejzLdrM909hxPougab/a6Xe+g8dBvWH5/bzEyKA/EtVRP5LQE7/P0FE+jZ4ovVEiBj2Evfu8GcPBPUYpfT2G9cE9lvSTvP7+O7xiwHc8JLbvvgiOor98HvU+F3jOPyef5D/WhPS/vG9vv4iNwb6GUBG/ZNNRPmQaKb1OxgU9ACEAvfm4wT2/snw9hvXBPZj0k7z0/ju8mzR1PAF3Yb0bFbi+eT+oPz7uKL9a/qI/XTnOP1+8Lb+hPoE/d+VNP37SUT7rQym9uo0GPRqk+7zzA8I9le98PYb1wT2c9JO89f47vIvidzzqT8i+DHj0Pu3ORb9FxNG/ZiKFv5VvWD91xaA/gzNdvq0WOL9k01E+YxopvVDGBT3YowC9+rjBPcGyfD2G9cE9mPSTvPT+O7y+NHU8DkGqviQEND7wZdy+A0geQCGWZD/wgpY/5+hnv1CWVT9Nk66+ZNNRPnIaKb1SxgU9jr/9vO+4wT2isnw9c/XBPX3zk7w9ADy8RjR1PBAQyT7Ih06+P8prv8+ojj8mHJI/ywYIPbNTcL8h9Du/krwOPtrTUT4xBSm9ZBsGPbz2+LytO8I9Wnp8Pe4ywj0wuom8cjMuvK8lejy71l8+hcTBvvaw0T5SLIe+OOmGv0TSxz/bVnC/+plWPzcdU78T01E+YWcpvakuBj3pq/q8T0PCPeWzfT2JAcI93KCSvLtxO7xFrHs8mZ9Rv7DRaT51+lW/UEynvnmZ6r6BQY8/wdMyv9+Qhb9v9fE+WKdaPshKx0CuN7fAMWt3wDVsicC7Uby/f7kaP4AF0L4/1TvAwAM1wEG/nr40NDE+gpFUPn5wTT+U9XI//WQcP5lQb79YMxE/hYQGv8/QUT6Xnii9USIGPaI+/LwZw8E9Lil9PXr1wT2K85O8/v47vFDAdzwY71G+pEofvwEtkL6BnY4+4aJYPrpIz79U6Ge/Il+sPddxDz7P0FE+kZ4ovVEiBj1k+/u8GcPBPT0pfT2C9cE9M/STvP7+O7xZwHc8UteavWZO6T3Bwvm+njtpv5Txfz9ajcC/gcWgP0kZXr5XmX0/UNNRPghUKb1zFgY9qrr6vOvxwT1g+nw9hyPCPRlWkbygIj+8THt4PAdxEj6Ep9y+fTvlvlHqDEDHMoa+SUKiP7n5pD/Ri2+9npF7P7bTUT5URSm98rMFPcsT/Lzdg8I98IZ8PR+4wT2Bd428EEEmvDGodzyg0OI+zvC5POuZyj3kEmE+e4jvP2L5ob/VVnC/CLIqvu+KQj/j0lE+6kMpvZF3Bj2uZvu8OxPCPZXvfD145sE9rvSTvFsmObxq4nc8uqn/PsBtkL7C+iy/IixCv5sAgr4MNEG/QaGEPjzwzz9TjEK/wk9RPo85Kb3zs7rABxXEP59WiUCP4cfA9RbLPdCOBb4W4yW9PwFGvi7EFj/GCAM7B+cBv5roRr5liJo/CUbNv4ijE79GOpq+Z9A+v8/QUT6Qnii9USIGPWB3/LwZw8E9QCl9PYL1wT1I9JO8/v47vEnAdzz2Ie++vypYPpr/Dr9LGfs/De5ZP2u8Rz9b7Ge/egG3PuTnPD2K0lE+U+YovYDsBT1zZ/q85yPCPWAwfT3j88E9V8+TvAD/O7z+/Xg8T1cAvytLHL3WyGe/bHllv83jej++OQU7SHukP12Nkj6ebWs/4NFRPj7CKL1MIgY9Js/8vBbDwT3rz3w9VczBPfdKkLyq/ju8iL93PIAw/765Z6a+aoQtv3RDxr1FAPO9cfxrP2tfM78hfCe/SPvwPjbUUT7kHym9rQ0GPbkK/bw9XMI9brd7PUMRwj3mZYS8AfskvELvdzyUvX4+NfSgvfPhGT7JIgo+pqo1vDYIAz3sVnC/IAgcv3cuDr8V91E+jzkpvRT+BT0kXfu85gHCPU84fT2G9cE9nPSTvP7+O7w8cHg8lrUmvwgzmj71Syq/EZvpvya6O7/c1Mk+FO6kP5Gaqj7eCpc9ddFRPke0KL1OIgY9LaP7vBfDwT3h8nw9c9zBPdm5kbyo/ju89793PMkMn76oDxK/m3sTvyaC5L+ZB8q/b6lGPkHupD/gDLQ+eqEkP7vSUT4r/ii9JUUGPWMl+byhdsI9vmV8PZn1wT0D9JO80gM8vLaVfTyFcyw/J54dP5R2aL/D0Jc98HCOvzZpGz3y0qM/Gu0zPuWPwr5k01E+cVopvfIyBj32RPm8W0DCPU7UfT2G9cE9k/STvPP+O7w8rHs8Kj9fv6kQYb9y1VQ+Oy60v3pKND9/lpU/av8qv6GcYsAkAlTAg3g3wB9LTkBWwOm/LZ0VwOsi3cADp6HAAAAgwedeS0Bx2Vw+g3pev75CJL+CWde9yC9kvxnznr8XmXK/IiqxPnZ6pD83QS49r+Alv2rUUT6uOim9CvcFPfge/rweBsI9BDd9Pf/4wT3X9pO8RVM7vMVpeDyqtAK/0h3nPxuWrz+CQfU/+PxOv4zDk78icG+/oDRQvzhyusALLqLAefXbQCtSBj2AdrO+L1/CPUqDfT0MMcI9PMqXvLr7I7yBkHY8DsseP4JtOz5Ks12/xmrZvYHWnr+cn2M/8MSgP+jcKr4sq4U+z9BRPpGeKL1RIgY9uwb9vBrDwT0+KX09gfXBPS30k7z+/ju8NsB3PAWnGz91wdu8S1pZv1wbwjxEoL2/A5J2P3fjpD/C9Ao/4IqGvoHUUT7lOCm9aP4FPd62+ryrAcI9HTp9PWn2wT1WB5S8IAk8vDhweDy8q7O9/KsMPlGcZ79xVUe/+7GoPVdr6zu1xqA/6bMlv2HCxL/B01E+3A8pvQQSBj2LVBDAK5HCPc+0fT2FucE9B3qYvHRnJLyQ4Xc8YepUv3Lrjr5CGd++1EuMP/UwJb/MDoE/8QArv4M2aj+Xoz2/u9JRPhn+KL3pRAY99EbvvKh2wj3aZXw9hvXBPZX0k7wO/zu8t5N9PEwU9D5ZzjW/lgiGvlHDw7+wm8K/c0u8v/HupD9L3fc+JTzHPrvSUT4j/ii9/EQGPYxJ97y3dsI9z2V8PYb1wT2U9JO8Dv87vFaVfTxcZjm+Z00Mv46Awb4qcdi/vXuov66bzb5TeaQ/NiTiPv3SDb/s0FE+d6IovVAiBj3/ffu8GMPBPXoffT0C8cE9xY2TvO7+O7xXwHc83OVgv4DJp72rQTs9/KCUP/Zh+T6Z5yE+fU9vv5tTkb7QKyC/ftJRPutDKb24jQY9SBX8vPUDwj2W73w9hPXBPZz0k7yt/ju8g+J3PJZyTT13tIq/XOZWv6wJdD9xWy0/zwN9P/P2oj8hBwu/gjWtvgzTUT6POSm987O6wPW0qj/A5ME9H5p9Pfb0wT3a/ZO8lgA8vO02fDxDPDq+s8XZvvASCr/BYlO/Y32rv9GElz/f/KQ/TUOKPpVRHj3htFE+iCIqvWykAD0LABU+vZ7pv6tSCMDMtsY92aOHvLtk3LmAq7o+74+pPrVnhL7DFVE9btI2v6l1rb94Zpg+T4ekP2U7aj+UUFu/u9JRPhz+KL3vRAY92LbxvK12wj3WZXw9hvXBPZX0k7wO/zu8NZR9PN4pRL0nnKs+K/dRvwaNGcCQnsS/kdJvv8l6pD/WzGQ/doBLvs/QUT6Nnii9USIGPQdh/bwaw8E9SSl9PYb1wT2c9JO8/v47vCrAdzxCI7I9v08vP0B3Er9ny56+myUcPzL9kD8adW+/pKkYP5JYx76201E+VEUpvfKzBT0vPv682IPCPeKGfD0euME9+HaNvLVBJrzmp3c8C7rRPsBQCD6A7Y4/IsPZvvCG5T8iuow/bMWgPx2EsT5TFss9u9JRPif+KL0GRQY9Ncb4vLV2wj3KZXw9ivXBPXn0k7zz/zu8o5V9PEy2Dr/Aqja/2D+qvpdOsD/w4Yw/0eO5vl5TcL/Ue0C/Tzpbv37SUT4zLym9gW4FPcAe/LzM/8E9CYF9PXj1wT2c9JO8lAE8vILidzyRK4s+vNn+vSJcLL/DrWu/PkuBv3q+K7+0zqA/9P27PjHVgz7101E+7i0pvagdBj2ru+y8XU15v8xDhr/tEcI9zYSVvJkRLbyMXXI+Y/xdP0HTeL43QWq/6Rm/Pm2aYz6XOqI8qtOgPzMZlb+BKlw/ytJRPo85Kb3zs7rAcg6Lvk6cwT2o8309hvXBPab0k7zm/ju8OU9+PDYNuL54Q6a/SlUAP1Xg8D8m/dE/kF5SP/JTb7/MzMa+nlKvv93TUT5YolpAABwGPcOP2D83t8E9I+J9PW00wj3Bbpy8NsdOvHADdjyW3ge/sDoRvuwrZL9Um5m+ajeGv2Gdc77Y+6Q/QliUvw4u1r5xhJk+mNglvWW47r8G1R1AbPbCwMkdHMDh8gG+OkBFwPpIrb8c4Y9AKOeIPoeq/73OAGq/imCOP5zB1j/88jQ9plVwv3vIRcAS1js/FtNRPjxhKb0FSwY9tGKpv90nwj3eD309hvXBPZj0k7z6/ju83U11PPRPR78DBe0+CcG/PYy8hj81IY07dQ5cv+E1Q7/gIlC/nleRvmXIUT4zfim9h5wDPeIzdMDaGem+tGIRPoq7wz0+LJe8oMqBvAUMur4HQGW8Q2JjvvcpR79jEWa/GHypv52ciz6F+KQ/0G1Bv6T5cj670lE+HP4ove5EBj1iafG8rHbCPddlfD2G9cE9lfSTvA7/O7wmlH08VSnEPq+uzL56/JK9D1eWP5CdKjwfnnU/R1Nwv7tcCb/WjcW7z9BRPo2eKL1RIgY9LYb9vBvDwT1JKX09hvXBPZz0k7z+/ju8JcB3PKdlL74WXg++/p1qv1kvqj/L8bs+Xi0OvXM4gT9GdCA/vpMkv8/QUT6Nnii9USIGPfgD/LwZw8E9Ryl9PYb1wT2W9JO8/v47vFjAdzybdpy/A6d+Pco+kL4mUxVAgUovP8GpMz9k6Ge/BjZSP5xvhD1+0lE+My8pvW1uBT2kHP282v/BPQiBfT2G9cE9nPSTvP7+O7xw4nc8JT1Vv8ONOD+V0ym9fTFKQIwthj+c38M/2JVov9yboj4gTJA+ttNRPlRFKb3yswU9o2X9vNqDwj3nhnw9HrjBPS13jbx0QSa8A6h3PNPCgD81Puc+A4Jdv9NAy750hFC/vQblv055pD98zCA/pQ+Tv8XTUT6XJym9b1wGPcESU8BMisE9cEZ9Pf4wwj0WD5S8zWtVvBreeTzWeBK/YW8eP8hUOL+Toy2/IZT+vskZOz+e6KQ/wZWoPuKX0T6p01E+hlYpvVoqBj1hGPW8TUbCPQzefT0r68E9/VqUvIXjOrzIq3s8FbU8vqeEFr4YXy4/H32iPoFS4z7ePU0+dFJwv3hVjz9EOyg/19NRPqknKb09VwY9A24UP8Nwwj3wFH09jDDCPZPjkrw31SK8cXt6PKSoZT2vRkg/jVkCvwWpDD2kuO4+PnzSv21Ub7+ODsI+MHIWP7HTUT7lDCm9ahAGPZErab/iB8I9okl9PX79wT26f5S8kQc7vLZMeDxiww4/NxwxP0qXAz+b31o/iUzQv3wVB8CYVHC/oW7APveRBj9k01E+aBopvUfGBT1UdP289bjBPbyyfD2G9cE9l/STvPT+O7w8NHU8oe8SvaE9sD8QDmy/EHN2Pz/jEL577Qk92Mxmv316HMBo6aA/hNNRPiD4KL2SHAY92vI1wMSDwT2iSX09cDfCPSnvlLy8wlS8red3PMATg74KXTC/MP0tv4GDD8BATF0+oLB3P6OFhj90hTK/mQSAvVPTUT56OSm94rgFPVCh+7yVLcI9Yzt9PR8gwj2b9JO8TvEzvIhceDyGP6e+Tzg4v9mw/r6xXpe+S/SbPhHXhz+dYx8/rztrvg4hMT/a01E+MQUpvWQbBj2YE/q8qjvCPVh6fD3uMsI9B7qJvAc0LrxeJXo8VKZzv2gxjT5IgF+9bB48QMR/Lz8jyJY/iehnv9tUBz+h+Ts/u9JRPhP+KL3gRAY9zkrrvKF2wj3fZXw9hvXBPZX0k7wO/zu86JJ9PBGHlb7dZyy/KG8xP2yawT9hvZo/Ja45PGlVcL9MMYQ93xURv2TTUT5wWim98zIGPYSR+LxbQMI9TdR9PYb1wT2X9JO89P47vCWsezz0GQy/d4GsvaneUr9N3QRA/sQ5vhv9Iz9diKQ/w40Vv+i/Nj8r1FE+UzIpvfv1BT3T77e+2tpPvtGDFT9bA8I9iIyUvD6XOrw6CCa/90V2vu23Hb1pUuk/FSvNPw7nyz9Mw++/blczvwDDcT5r3Ve8ZNNRPnFaKb3zMgY9VM34vFtAwj1O1H09hvXBPZf0k7z0/ju8LKx7PFX5Wz7TGtm+9vZov5fnLz1MnTq/VBzNPBt7hj86Ypu90/dOvk3MUT5cui+9UTr5PH2LFUCZdgq/iZqDv1Izwz07Gii92QCLO5cRvz/W+u0+DWdEvNVyQL9fzfE9K2ytvxqgKb6Y7KQ/KCxjP5X3wD1l1FE+qDcpvZkDBj1lffm8rQLCPbI4fT0Z+cE9PyaUvGVCPLz1iXg8tkWFvJc7Db9UOjk/qjuBP8yZqz/7dI4+dlZwv7w1Pb8hqIS+z9BRPo2eKL1RIgY9Zc/8vBrDwT1IKX09hvXBPZz0k7z+/ju8PcB3PC/9Qz5Cfuy/u1dtv13izr5e6BG/rZDhO2lRgj8d2X/AncL/v7bTUT7JLSm9P0gGPciTe0B0g8I9m4V8PRW4wT01ao28S1EmvAmhdzxADKM7WILJPuCxAr4dUpQ/LtdpP+dcaD/DUG+/9ibHPp6sYj+mz1E+/uMovUj+BT0Bw7m/mvE7vskXBD0YSsI9xFWRvAHgVbyvvxW+rSjvvkchoL8kpUw/5NvaP0EHxT+Sar+/9ghwvyEhAr82W82/2tNRPuSiWkD2pAU9CbYMvq2twT2gxn09hjPCPWhGm7wJo1C8cwh2PMhCLr565Qa/ZiM7v6Zycb8ejre/cqKXPYzspD+YO9u+HxQwP1HRUT5zryi9TyIGPTj1/LwYw8E9+f58PQbiwT2uOJK82v47vOO/dzwf6Sm/8BStvmYvD7+ZHnM/sks1vVlznj9IASu/LFH7PaURyL7L01E+qhApvQwSBj1/A/u8+K7BPUpHfj3ntME9KOadvHPJSbw9OHk8uss0vlW7773uXmu/3Yi2PwT6rj8ktxy8K+igP6hhO79hkMA+VNRRPjklKb02LAY9DhHuvJm+wj0kt3s9EMPBPZoOjbwSKS+8p7d9PJRoDkuASxOGlGgSdJRSlHUu", "achieved_goal": "[[-1.45830226e+00 2.91236639e+00 -5.06813240e+00]\n [-7.52815127e-01 7.78129995e-01 2.05044106e-01]\n [-1.64923996e-01 7.17485964e-01 2.04905644e-01]\n [-5.02302706e-01 8.73334765e-01 2.04898104e-01]\n [-5.43821990e-01 -2.68347889e-01 2.04871729e-01]\n [-8.14595539e-03 -5.27203619e-01 2.04904526e-01]\n [-3.58796740e+00 2.16196895e+00 2.04895839e-01]\n [-3.74936867e+00 -3.65808511e+00 -5.06812096e+00]\n [-7.77521908e-01 4.86574560e-01 2.04905435e-01]\n [-3.81323546e-02 -1.40288219e-01 2.04907954e-01]\n [ 6.00848138e-01 5.07662475e-01 2.04904526e-01]\n [-2.31258869e-01 -5.19385397e-01 2.04908267e-01]\n [ 4.38027736e-03 -5.66481113e-01 2.04898104e-01]\n [-2.30724365e-01 -4.18703890e+00 -5.06825304e+00]\n [ 5.02140701e-01 3.83328646e-01 2.04902738e-01]\n [-3.26311564e+00 -3.98718268e-01 2.04899132e-01]\n [-1.28426209e-01 -2.78020293e-01 2.05044106e-01]\n [ 7.30562031e-01 2.25655243e-01 2.04904526e-01]\n [-6.24241590e-01 -4.08637047e-01 2.04904526e-01]\n [ 9.54459131e-01 7.42762625e-01 2.04908922e-01]\n [ 1.00720763e+00 -1.00063056e-01 2.04905242e-01]\n [-1.52416095e-01 -1.08475363e+00 2.04910621e-01]\n [ 6.01458430e-01 5.01744226e-02 2.04904526e-01]\n [ 1.40389407e+00 -4.30145949e-01 2.04908878e-01]\n [-4.79897968e-02 -6.75930619e-01 2.04908192e-01]\n [ 2.60169172e+00 5.38557231e-01 -5.06583738e+00]\n [-7.60063767e-01 -3.22705209e-01 2.04904526e-01]\n [ 8.51836860e-01 5.57304144e-01 2.04909787e-01]\n [ 3.39896321e-01 -4.17500317e-01 2.04904526e-01]\n [ 9.51291442e-01 -5.93800209e-02 2.04905435e-01]\n [ 1.64660513e-01 -1.14530638e-01 2.04909205e-01]\n [ 1.02323425e+00 5.55773377e-01 2.04898104e-01]\n [ 8.48496556e-01 -6.30718529e-01 2.04904526e-01]\n [-4.33888292e+00 1.78902245e+00 2.04909831e-01]\n [ 8.49582493e-01 -7.05178082e-01 2.04898104e-01]\n [ 9.07930255e-01 4.51039225e-01 2.04907954e-01]\n [-2.79307693e-01 -6.00846171e-01 2.04912245e-01]\n [ 7.14236081e-01 -5.18265069e-01 2.04906419e-01]\n [ 1.76003307e-01 -4.74442393e-01 2.04905435e-01]\n [-9.94624123e-02 9.12779331e-01 2.04907954e-01]\n [ 4.96005177e-01 2.84151047e-01 2.04907954e-01]\n [-4.83345240e-01 1.20745361e-01 2.04911634e-01]\n [ 1.02086496e+00 5.18662930e-01 2.04904601e-01]\n [ 5.93018711e-01 -8.36157322e-01 2.04910696e-01]\n [-6.76758066e-02 -5.10196745e-01 2.04905733e-01]\n [-8.05286705e-01 4.36201215e-01 2.04904586e-01]\n [-3.85408103e-01 6.45780206e-01 2.04907954e-01]\n [-3.91367644e-01 -1.15020096e-01 2.04898596e-01]\n [-2.19086289e+00 -9.81724143e-01 2.04909399e-01]\n [-5.76109529e-01 -5.73579907e-01 2.03578860e-01]\n [-4.17449236e-01 2.05037132e-01 2.04910800e-01]\n [-6.80678546e-01 5.94887495e-01 2.04911679e-01]\n [-1.71094179e-01 7.50762373e-02 2.04904661e-01]\n [ 6.45317316e-01 -2.38304213e-01 2.04912171e-01]\n [-6.07599437e-01 1.01236105e+00 2.04904526e-01]\n [ 4.95879084e-01 1.21446025e+00 2.04909474e-01]\n [-7.55661786e-01 2.41535842e-01 2.04909712e-01]\n [ 8.19657445e-01 -5.77401280e-01 2.04898104e-01]\n [-3.78032923e-01 -5.67634940e-01 2.04907954e-01]\n [ 1.00972378e+00 8.04282606e-01 2.04904526e-01]\n [-2.16016814e-01 -7.19096005e-01 2.04907954e-01]\n [ 8.34324837e-01 -3.40967566e-01 2.04907954e-01]\n [-7.34193861e-01 1.39391214e-01 2.04909712e-01]\n [ 8.38286996e-01 -8.24664533e-01 2.04906747e-01]\n [-1.04348361e+00 4.72575635e-01 2.13528991e-01]\n [ 5.67189693e-01 -5.25459588e-01 2.04898104e-01]\n [ 8.41658264e-02 1.40082702e-01 2.04898104e-01]\n [-2.16893330e-01 9.90621030e-01 2.04907656e-01]\n [-5.84829487e-02 9.82690692e-01 2.04909176e-01]\n [-1.66694760e-01 7.59932458e-01 2.04906031e-01]\n [ 1.62451887e+00 -7.59953678e-01 2.04405814e-01]\n [-3.01225841e-01 -7.45367467e-01 2.04898104e-01]\n [ 3.57433140e-01 4.61195856e-02 2.04904705e-01]\n [ 2.86234766e-01 9.19641376e-01 2.04902172e-01]\n [-6.54237807e-01 4.70667124e-01 2.04911083e-01]\n [-6.09498978e-01 -5.55396497e-01 2.05044106e-01]\n [ 3.33210498e-01 7.37511963e-02 2.04900578e-01]\n [ 3.51660728e-01 6.43088937e-01 2.04905435e-01]\n [ 1.75709158e-01 -3.80004078e-01 2.04907954e-01]\n [-3.54080987e+00 -3.31263065e+00 -2.86673045e+00]\n [ 4.25426625e-02 -6.47959650e-01 2.04911858e-01]\n [-8.13302994e-01 -5.82644272e+00 -5.06812048e+00]\n [-1.66858315e-01 2.61071563e-01 2.04898104e-01]\n [ 5.42797208e-01 -2.62778282e-01 2.04912201e-01]\n [-6.47276461e-01 -1.53718197e+00 2.04909340e-01]\n [ 9.14894283e-01 -7.40777433e-01 2.04905435e-01]\n [ 4.84110206e-01 3.89130741e-01 2.04905435e-01]\n [ 4.41682518e-01 -5.54000676e-01 2.04898536e-01]\n [-2.83840984e-01 -6.25668526e-01 2.04904526e-01]\n [-5.43077528e-01 -3.38298857e-01 2.04906642e-01]\n [ 2.70044714e-01 3.86520214e-02 2.04791561e-01]\n [ 9.14968789e-01 -8.56698275e-01 2.04905435e-01]\n [ 8.93750548e-01 -1.98732227e-01 2.04898104e-01]\n [ 5.96338511e-01 -3.89347613e-01 2.04909176e-01]\n [ 3.46711069e-01 9.91636738e-02 2.04905435e-01]\n [-7.51889467e-01 -8.56358469e-01 2.04904526e-01]\n [ 3.67171884e-01 2.57485896e-01 2.04910114e-01]\n [-1.16483152e+00 8.60023558e-01 2.04905659e-01]\n [-3.88281226e-01 -1.36970878e+00 2.04909757e-01]\n [-1.15894341e+00 -4.18320119e-01 2.99838573e-01]\n [-3.09036136e+00 7.33735204e-01 2.04906791e-01]\n [-8.13032150e-01 -2.83871591e-01 2.04866007e-01]\n [-7.55581856e-01 2.37280428e-01 2.04905435e-01]\n [-5.36571205e-01 -6.02887105e-03 2.04898104e-01]\n [ 6.26774192e-01 -6.42879367e-01 2.04898104e-01]\n [ 8.21136832e-01 6.46660030e-02 2.04904526e-01]\n [ 3.17595363e-01 2.81830788e-01 2.04909176e-01]\n [ 6.28120184e-01 -1.14891493e+00 2.04909399e-01]\n [ 3.29267532e-01 4.09361899e-01 2.04908982e-01]\n [ 1.11979580e+00 6.57154322e-01 2.04909667e-01]\n [ 3.79017293e-01 5.87679863e-01 2.04909101e-01]\n [ 3.75844032e-01 5.25664747e-01 2.04907954e-01]\n [-2.44497609e+00 1.25712299e+00 2.04908431e-01]\n [-6.97348833e-01 -6.25087693e-02 2.04907700e-01]\n [-2.29719862e-01 6.91910625e-01 2.04909712e-01]\n [ 5.28638542e-01 7.34277785e-01 2.04905435e-01]\n [ 6.45471513e-02 -5.66739976e-01 2.04907954e-01]\n [-5.84194362e-01 7.13865757e-01 2.04910919e-01]\n [ 2.36095428e-01 -1.31753488e-02 2.04907954e-01]\n [-7.58709460e-02 -2.02117249e-01 2.04880908e-01]\n [ 8.87392521e-01 9.42222252e-02 2.04911783e-01]\n [-7.39101171e-01 -2.59095222e-01 2.04898104e-01]\n [-3.99762654e+00 -1.99812663e+00 2.04909176e-01]\n [ 3.88969123e-01 8.85446429e-01 2.04893678e-01]\n [-5.08318007e-01 -1.60434604e+00 2.04909712e-01]\n [-4.28189039e-01 6.87807024e-01 2.04900041e-01]\n [ 1.22713417e-01 -3.90759617e-01 2.04909489e-01]\n [-7.31958866e-01 3.76101524e-01 2.04911530e-01]]", "desired_goal": "[[-0.3999332 1.2905246 -0.21106775]\n [ 1.2137913 0.30752203 -1.0849363 ]\n [ 0.309885 -1.1229746 -1.0849363 ]\n [-1.5610765 -0.9412586 -0.45295817]\n [ 0.7136025 0.6892503 1.3558874 ]\n [-0.8153092 1.5842634 -1.0849363 ]\n [ 1.109094 -1.7211881 0.07055427]\n [-0.5929346 0.01546203 1.4478004 ]\n [-0.46113753 -0.03978136 0.888678 ]\n [-1.0403588 -1.50929 1.5534122 ]\n [ 1.2285095 1.3644879 -1.0849363 ]\n [-1.6762266 1.5868485 -0.48567048]\n [ 1.1995859 1.0235043 1.77234 ]\n [ 1.2132545 -1.0174841 -1.0849363 ]\n [ 1.3853059 -0.8677608 -1.0849363 ]\n [ 1.3148092 -1.207935 1.4923549 ]\n [ 0.73546976 -0.72369903 0.46285608]\n [ 0.8207915 -0.7537856 -1.0849363 ]\n [ 0.52982944 0.98026913 0.28350514]\n [ 0.08084858 0.0069779 -0.35715672]\n [-1.3908308 -1.2825422 -1.0849363 ]\n [ 0.30376437 0.08875941 -0.42162293]\n [-0.5171435 1.6842215 -0.5403448 ]\n [-1.6745678 1.6448478 1.862616 ]\n [-1.2657686 0.5754558 -0.12204406]\n [-0.2780616 0.18567944 -0.10540683]\n [-0.41241038 -0.3093841 -0.5502564 ]\n [ 0.9354709 -1.5990523 -1.0849363 ]\n [ 1.0761147 1.1157408 0.90210515]\n [ 1.078103 0.7656652 -1.0849363 ]\n [ 0.84681857 -0.02775279 -1.0673289 ]\n [-0.42777914 0.8964982 1.1906751 ]\n [-1.4086453 0.42108557 -0.87369174]\n [ 0.00985665 -1.4977909 -1.0849363 ]\n [ 0.6784901 0.1537491 -1.0849363 ]\n [ 0.89886224 -1.4750422 0.4024608 ]\n [ 0.6202967 -0.37227464 -0.0623164 ]\n [-0.2526445 1.4550711 -0.5812836 ]\n [-1.3815551 -0.52013135 1.6384356 ]\n [ 0.3975164 0.7187955 -1.0849363 ]\n [ 1.334513 -1.6086671 -1.0849363 ]\n [-0.50889605 -0.60826075 -0.50862944]\n [-0.00423879 0.09087221 -1.011217 ]\n [-1.0943428 -0.25900364 -1.0849363 ]\n [ 1.0385394 -0.7234797 1.3023456 ]\n [ 1.563384 -0.47763687 1.114282 ]\n [ 0.6924396 0.3729153 -0.8863415 ]\n [-0.80111635 -1.2527554 0.03155019]\n [ 1.2738658 -1.0508064 0.7418713 ]\n [-0.5090553 -0.94887143 0.9078014 ]\n [ 1.0456821 1.0859742 1.6511183 ]\n [-1.3130202 -0.46404266 -0.63362074]\n [ 0.46064186 0.16785613 -0.3811654 ]\n [ 0.07546018 -0.40438974 -0.65649605]\n [-1.6808819 -0.9921141 -1.0849363 ]\n [ 1.0073354 -0.03659495 -0.8887697 ]\n [-0.22139254 -0.9707014 -0.6725171 ]\n [ 0.91937673 -0.19681227 -1.0849363 ]\n [ 1.411017 1.5255172 0.1343841 ]\n [ 1.0871859 0.60152847 0.86250037]\n [ 0.72125536 -0.16331875 0.72933894]\n [ 1.178595 0.28855357 0.02005357]\n [ 0.9961491 -0.21101399 -0.9305918 ]\n [-0.71231437 0.5872312 -1.0849363 ]\n [ 1.2959768 0.73163295 -1.0849363 ]\n [-1.7376347 -1.31683 -1.0849363 ]\n [ 0.8851788 -0.39956182 -0.33939895]\n [-1.6050014 -1.4280362 0.38200206]\n [ 1.1795883 0.3982296 -0.6522532 ]\n [ 0.26905188 0.689786 -1.0849363 ]\n [-0.6543948 -1.6405128 -1.0849363 ]\n [-0.7691809 -0.45046344 -1.0849363 ]\n [-0.6148512 1.1186303 -1.0849363 ]\n [ 1.5567424 1.155015 1.4480336 ]\n [-1.7017156 1.3418099 -1.0849363 ]\n [ 1.2915751 -1.2716111 -1.0849363 ]\n [-0.65524185 -0.7394065 1.7443295 ]\n [-0.17405808 -1.3462942 1.6916425 ]\n [ 1.1230366 -0.16561018 -0.651996 ]\n [-0.44854656 -1.4116591 0.5513073 ]\n [-0.6683362 -0.9710461 1.0350655 ]\n [ 0.77705437 1.0697256 -1.0849363 ]\n [ 1.323538 0.6650607 -1.0849363 ]\n [ 1.522043 -1.169657 -1.0849363 ]\n [ 1.5388414 -0.16123493 0.5373559 ]\n [-1.0887837 -1.3859171 -0.6473905 ]\n [-1.6014625 0.9258997 -0.7698103 ]\n [-0.9988766 0.18148401 0.19207318]\n [-1.6909066 -0.09364685 1.6159174 ]\n [-0.699842 -1.1822441 1.0708798 ]\n [ 1.0890024 -1.7363023 1.6509991 ]\n [-0.37512934 0.97043926 -1.0849363 ]\n [ 0.98182607 -0.19915238 0.86881924]\n [ 0.4007765 -0.41733128 -0.5755606 ]\n [ 0.03402886 0.92842895 1.3926705 ]\n [ 1.2283596 1.2035196 -0.29845616]\n [ 0.7862907 1.267562 -1.0849363 ]\n [ 0.33421525 -0.9657514 -0.42192447]\n [ 1.359075 -0.81705683 0.78387076]\n [-0.36206692 -0.11293298 1.1464252 ]\n [-1.2950981 -0.19073665 0.6656595 ]\n [ 1.1701812 -1.4146031 1.8815871 ]\n [ 0.3182489 -1.6195337 0.2682164 ]\n [ 0.0660305 1.237893 -1.0849363 ]\n [-0.94165105 -1.1595349 -1.0849363 ]\n [-1.4914329 1.0284021 0.80058515]\n [-1.5574411 -0.18791847 1.8119682 ]\n [ 1.6712637 -1.0661049 -0.7914626 ]\n [-1.3818454 -0.66333675 0.2125469 ]\n [ 0.8308756 0.1723661 -1.0849363 ]\n [ 0.38618776 0.1082398 -1.0849363 ]\n [ 1.4220123 -1.4753655 -0.4570572 ]\n [ 0.5237612 -0.7458435 -1.0849363 ]\n [-0.02598097 1.1877507 -0.39119795]\n [ 0.20739914 0.39414614 -1.0849363 ]\n [-0.61396873 -0.02502691 0.896036 ]\n [ 0.8057946 1.482386 1.1806066 ]\n [ 0.28151682 -0.05995787 0.1538397 ]\n [-1.5903269 -1.5789583 1.657392 ]\n [ 0.7380462 -0.32919526 -1.0849363 ]\n [-0.15837552 0.76169515 -1.0849363 ]\n [ 0.60788304 1.1329497 -0.10444015]\n [-0.5850833 -0.9405387 0.59542155]\n [-1.1649635 -0.44156435 0.46232224]\n [-0.4483248 0.07429451 0.4178685 ]\n [ 0.00507684 0.6750766 -0.03665829]\n [-0.28227136 0.47428796 -1.0849363 ]\n [ 1.3611896 -1.5160143 1.7567273 ]]", "observation": "[[-2.9193313 1.7134912 -0.77854437 ... -0.01811504 -0.01157696\n 0.01512773]\n [ 0.24877006 -0.07859079 0.15027599 ... -0.01806097 -0.01147437\n 0.01516348]\n [ 0.55550593 0.8932935 -0.84072375 ... -0.0180439 -0.01146837\n 0.01547726]\n ...\n [-0.17017663 -0.52693903 -0.7310089 ... -0.01784929 -0.01147434\n 0.01512143]\n [-0.6637134 -0.33805037 -0.559317 ... -0.01927479 -0.0123161\n 0.01521116]\n [-0.1765584 -0.11705653 -0.91941726 ... -0.01721888 -0.01069094\n 0.01548568]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWV+zIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAGAAAAAAAAtThnvdRuvLwK16M8zgH2PHZtjD0K16M8C175veRYpLwK16M8OusDPfbFF70K16M8UQgJvvpQD70K16M8PL4VPoMhIz0K16M8QI51veCC5T0K16M8sUPjPcLVBb0K16M8msGEPaU1/z0K16M8v797O+Ww370K16M8cFDYveOLAz4K16M8w3Q4vTOOpb0K16M8Y+IBvn8nCT4K16M8o6YtPQC3bTwK16M8GfWvPMlY2b0K16M8cE8VPZXyEr4K16M8wSOvvadMDL0K16M8UlAQPjsbnTwK16M84M1ovZMNhj0K16M8TDrfvKOXA74K16M8M58gPX60Ez4K16M8191HvF/QFT4K16M8VG48Pf8p2T0K16M8BM+dPHdDqzwK16M8QfoYvuSRvL0K16M8w2DAPaCVbTwK16M84ncEPrv4sT0K16M8vC0KvmSdUb0K16M8Zc7jvT87E74K16M8qLCtPQXX4T0K16M89AVaPcNqDb4K16M8p09lPdcRET4K16M8WTDaPPkbLb0K16M81GCcu2VGsT0K16M8MLz3vXNTGb4K16M8R+BgPRPcWTsK16M8kHVevS1KdbwK16M80+IEPjd1Db4K16M8sZrCPG33sj0K16M8txxqPbHCAT4K16M8SnjWPTyWOL0K16M8Ylb5vXccEj4K16M8qinWPCAkqb0K16M87HjPvXCF2z0K16M8hBtJO1Wgqz0K16M8YlUFPjoC/70K16M8uWoPPhNDXL0K16M8VGM7PVYZ3z0K16M8D3c/PSptFb4K16M8gbChvRaKND0K16M8CNivPfkNrr0K16M8ejJ3PKLfDz4K16M8sMvyvXGETD0K16M8okn+vdvCW7wK16M8La0Ou4WUmz0K16M8xU9ZPFNvor0K16M813gCvQEV070K16M8rHfUPfzU3L0K16M8qsLAve240L0K16M8kjTfPatdeDwK16M8JM+ivMvCGD4K16M863JtPbrjAj4K16M8Sxa4vVVSyb0K16M8MDbcPUQ//70K16M8h7IHPjw/6DwK16M8+xIHvOdv1j0K16M8hO/wPNXoqLwK16M80SsSPpPmbD0K16M8Li7muwKUwj0K16M8QquTPRl3TbwK16M8p8G1vSCKC74K16M8UnSEPbXpaL0K16M8TBmsvVzED74K16M8mVifPJgv8TsK16M8bxEFPvWDmj0K16M8d5oBvkrVar0K16M8IstevY/6Br0K16M8AOAcvTYIqzwK16M8FHX9vfv35b0K16M8XabSPAqYqb0K16M8DUmIvGmJcToK16M816bgvAXiBj4K16M8uTpBvTMcm70K16M8dnOnvTttkD0K16M8x6HpPf4StD0K16M80cUhvWFqtD0K16M8qt2wvHxXv70K16M8u5pHPbcV6L0K16M85fREPBV19j0K16M8aDpxPfoo5r0K16M8+bvNPXuY+D0K16M89u4Nvk+h2z0K16M8031IPSkqCL4K16M8NpBRvVgokr0K16M821LcvPmB5LsK16M8lb4cPKM2Yz0K16M8EaTEvdJ/lz0K16M8a+b9vUpvOL0K16M8ZzENPUPQpzwK16M8s4ERPsAW7TwK16M8pLp8vYDcAT4K16M8XDRjPT6EMbwK16M8kqzbPT2S870K16M8zoMZvTb9mz0K16M8+oL+vKaftL0K16M8Oq0OPvXr3b0K16M8V4otu84WAr4K16M8Vq2fvadNAr4K16M8quzzPM2yu70K16M8CtafvXk75z0K16M81WakPTUX8L0K16M8RPYBvpdXi7oK16M8u+ZGvJw/GT4K16M8shUFPUOKMj0K16M86FwZvpvQ6r0K16M8LBcXO8an8TwK16M87ESDOxnBcr0K16M8K1gVPDBVDr4K16M8gq2dPfVDEr4K16M86AW/PEfcmTwK16M8/O/lPNsOtD0K16M8fyvGPeMO1joK16M8mB/HvTnAvz0K16M8DiQ/PUnTBj4K16M8Lk31vfEtrD0K16M8KJrnvXoY9L0K16M8GWxhvVIv0jwK16M8jh0BvmaT1DwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkuASwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAGAAAAAAAAL2xoO+hhCj77A0g9K3eSvTWdd70K16M8wJP+vSG0ob29lDg+WhsIPnG1XjsK16M80GS7PeYyvT0K16M83pU7PLmWQL1EIcA9orcZPVQM9D0K16M80Z1UvQOxFT4Dgas9KnvjPcH6gr03ARA+bxUMPq2Zs70K16M82zTkvTMqY7kK16M87ReZvRU+CT4K16M8syHgPUFM2j0K16M8LVvLPWXeKr2pZiQ+0tdsPb0Jwj0K16M8b3SkPAQ0qrw7/B49kgPUPVJM0L3CtAY+VXf3vF+UhT0K16M8Va3DvLrTAj4K16M8Dx+HvcH4Prz9oTU9+besPZkQAj0K16M8oDskvb/AuL2Pdxo9Ek5uPenSLT0K16M8z5BQvUYJ6byyLwo+8HPQvRCBGb7BrYE9CCwlu1gvo73lTQk9b/pyPffIZL1lNDU9sSrYPW167D0K16M8vzkKvlea+DoK16M8QVOivQU6rryTgh09cbX3PSrPBL5ZQR4+L7/Qvd+CsTxKb8M9PYGKvO9SqDwK16M8zlwYvl6q5D0lY4w9qSBHva0ATLwr+FM+EjjEveUX+rxxiUs+/tx6PZWoRj1zcAo9gfmLuyXDmb2aAyg+QKIGOmVXQTxoOkE96D+NPRarbT0K16M85YMLPhOepD2AHTk9kFGoPVw2lrwjUkQ+NSU7PfgmDL4PqMQ8UOXnvYadlL3oKc891bmzPCgKDDwl4DA+CTT5PT3gAb7Fmpg9KpCUPajamz0K16M8kf4JvXhf6zynafs9V4YovTsX5Ty4gMk9rpewPaYBzT3asAQ+/uoHPgf9bL0K16M84D8OPSZrtjwK16M8ii4Wvqt/hj32lrA9mYaqvQemtjsrLBM9wCLMPYS54z0K16M8je6KPU9oFL4aWV0+1k1iPcbAG7zAw0A+sa9qvale6T0K16M8vaXXPMZVyD1puDE9iOtXvblCEb6lfv08b14avcYTpz0c7h0+J1UGPV87mD0K16M8rKaTPNA4Fz7aC3M9vz0IPhpw5TsawAc9lQoLvpwhszsK16M8yisCPlfvbD0Nqw099onSvIg15b0K16M8ba6Zu/wC1j3Yah4+7YXFPK77AzzIn0U+k40SvZ6BiT3C7aw9rYCXveBbBzx+VDA+IJHPPaaMF74K16M8RscQuzmfcb0i95Y9V07yPfuxyzvwAR8+UiewvRUe1b28hBw+yDW8PRsnFT5IPCA+Q62vPTmFezxK24w97mbHvCMP/z03Lv094OYAPviYA74K16M830yRPRbxE75V3N88VeyhvPEssb3nQ08+598YPlL72T3VH4I9EJdhvbvlC758URU+5ZmOPZji9T0z7y0+5vsLvtPCCrzrkOY9TuENPV12x70/jRI+GeStPOE0rj2+JF89nnu0vUeteT2bfCE+2zq6PLXZpT0K16M8o+AcveKDXz06Wf09FkaFveYO/D0K16M8VOL3PF5MAr6Oc7g9hCQVPq46VDzRHOU9OfKfvX1fsT0K16M8XMRLPKXv/T1qmIU9LM2MPaezjz1jxQQ+rCVWPRVaprxlvf09fkoIPpPb1z0K16M8wiLtOh34nzwKpPo9DtDNPYtK7TwK16M80UAIPlK+LL1JNTU+xebQvfw20zwK16M8wyxmvf9gqb26BWc9pAPQPZUcbD0K16M8ftApPfj5Fj4oKSE9GTIUPmcwDb7BgTY9XIU2PY5U27uY4fY9/LjaPSqKIj0cgjI9fQBXPPjC0T14GC4+VT8EPmeJdDugZyY+XMrUvRguy733M/g9yKXrva1y0z0K16M8HesDvpGB1r15gkg9ugOMPYHb271kedo9CqJ4PRvg/jwD7QM+yEvJvbmU5z2Vglg+QGjmPasy0r0VMRA+0E4EPkVrBj4K16M8NCgMPhicjj0K16M8vVbZPW8RCL5+zY89PjQjPWJWeL3bST0+ieXHPe9Lx70K16M88BJgPfEQCb4K16M8b0KvPcqhrz2F9Vo+aR3YPXKx+boK16M85bMXvkW1Bz6IFwg9B2kGvtBmsr0MkaM9eplDPeANCbyMjNo9lGgOS4BLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWACYAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtThnvdRuvLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAM4B9jx2bYw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAALXvm95FikvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOusDPfbFF70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFEICb76UA+9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA8vhU+gyEjPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAQI51veCC5T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALFD4z3C1QW9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACawYQ9pTX/PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAv797O+Ww370K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAHBQ2L3jiwM+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADDdDi9M46lvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAY+IBvn8nCT4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKOmLT0At208CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAZ9a88yVjZvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAcE8VPZXyEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAMEjr72nTAy9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABSUBA+OxudPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA4M1ovZMNhj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEw637yjlwO+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAznyA9frQTPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA191HvF/QFT4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFRuPD3/Kdk9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAEz508d0OrPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAQfoYvuSRvL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAMNgwD2glW08CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADidwQ+u/ixPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAvC0KvmSdUb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAGXO470/OxO+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACosK09BdfhPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9AVaPcNqDb4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKdPZT3XERE+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABZMNo8+RstvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA1GCcu2VGsT0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADC8971zUxm+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABH4GA9E9xZOwrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAkHVevS1KdbwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANPiBD43dQ2+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACxmsI8bfeyPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtxxqPbHCAT4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEp41j08lji9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABiVvm9dxwSPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqinWPCAkqb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOx4z71whds9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACEG0k7VaCrPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAYlUFPjoC/70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALlqDz4TQ1y9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABUYzs9VhnfPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAD3c/PSptFb4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIGwob0WijQ9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAI2K89+Q2uvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAejJ3PKLfDz4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALDL8r1xhEw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACiSf6928JbvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAALa0Ou4WUmz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAMVPWTxTb6K9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADXeAK9ARXTvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAArHfUPfzU3L0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKrCwL3tuNC9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACSNN89q114PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAJM+ivMvCGD4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOtybT264wI+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABLFri9VVLJvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAMDbcPUQ//70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIeyBz48P+g8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD7Ege852/WPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAhO/wPNXoqLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANErEj6T5mw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAuLua7ApTCPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAQquTPRl3TbwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKfBtb0gigu+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABSdIQ9telovQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAATBmsvVzED74K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJlYnzyYL/E7CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABvEQU+9YOaPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAd5oBvkrVar0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACLLXr2P+ga9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAA4By9NgirPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAFHX9vfv35b0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAF2m0jwKmKm9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAANSYi8aYlxOgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA16bgvAXiBj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALk6Qb0zHJu9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB2c6e9O22QPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAx6HpPf4StD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANHFIb1harQ9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACq3bC8fFe/vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAu5pHPbcV6L0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOX0RDwVdfY9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABoOnE9+ijmvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA+bvNPXuY+D0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPbuDb5Pods9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADTfUg9KSoIvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAANpBRvVgokr0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANtS3Lz5geS7CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACVvhw8ozZjPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAEaTEvdJ/lz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAGvm/b1Kbzi9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABnMQ09Q9CnPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAs4ERPsAW7TwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKS6fL2A3AE+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABcNGM9PoQxvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAkqzbPT2S870K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAM6DGb02/Zs9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD6gv68pp+0vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOq0OPvXr3b0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFeKLbvOFgK+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABWrZ+9p00CvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAquzzPM2yu70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAArWn715O+c9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADVZqQ9NRfwvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAARPYBvpdXi7oK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALvmRrycPxk+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACyFQU9Q4oyPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA6FwZvpvQ6r0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAACwXFzvGp/E8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADsRIM7GcFyvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAK1gVPDBVDr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIKtnT31QxK+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADoBb88R9yZPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA/O/lPNsOtD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAH8rxj3jDtY6CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACYH8e9OcC/PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAADiQ/PUnTBj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAC5N9b3xLaw9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAomue9ehj0vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAGWxhvVIv0jwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAI4dAb5mk9Q8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDkuASxOGlGgSdJRSlHUu", "achieved_goal": "[[-0.05645056 -0.02300207 0.02 ]\n [ 0.03003016 0.06856816 0.02 ]\n [-0.1217614 -0.02006192 0.02 ]\n [ 0.03220675 -0.03705402 0.02 ]\n [-0.13382079 -0.03498933 0.02 ]\n [ 0.1462335 0.03982688 0.02 ]\n [-0.05995011 0.11206603 0.02 ]\n [ 0.11096895 -0.03267456 0.02 ]\n [ 0.06482239 0.12461404 0.02 ]\n [ 0.00384139 -0.10922412 0.02 ]\n [-0.10562217 0.12846331 0.02 ]\n [-0.04503323 -0.08083763 0.02 ]\n [-0.12684016 0.13393973 0.02 ]\n [ 0.04239525 0.01450896 0.02 ]\n [ 0.02147918 -0.10612638 0.02 ]\n [ 0.03645271 -0.1435035 0.02 ]\n [-0.08551741 -0.03425279 0.02 ]\n [ 0.1409314 0.01917802 0.02 ]\n [-0.05683696 0.06545558 0.02 ]\n [-0.02724948 -0.12850814 0.02 ]\n [ 0.03921432 0.14424321 0.02 ]\n [-0.01219889 0.14630269 0.02 ]\n [ 0.04600365 0.10603713 0.02 ]\n [ 0.01926375 0.02090619 0.02 ]\n [-0.14939214 -0.09207514 0.02 ]\n [ 0.09393456 0.01450101 0.02 ]\n [ 0.12936357 0.0869002 0.02 ]\n [-0.13494009 -0.05117549 0.02 ]\n [-0.11123351 -0.1437807 0.02 ]\n [ 0.0848096 0.1102734 0.02 ]\n [ 0.05322833 -0.13810258 0.02 ]\n [ 0.05598417 0.14166962 0.02 ]\n [ 0.02663438 -0.042263 0.02 ]\n [-0.00477228 0.08656005 0.02 ]\n [-0.12096441 -0.1497324 0.02 ]\n [ 0.05490139 0.00332427 0.02 ]\n [-0.05431134 -0.0149713 0.02 ]\n [ 0.12977152 -0.13814245 0.02 ]\n [ 0.0237554 0.08738599 0.02 ]\n [ 0.05715629 0.12671925 0.02 ]\n [ 0.10472162 -0.04506515 0.02 ]\n [-0.12174679 0.14268671 0.02 ]\n [ 0.02614291 -0.08258843 0.02 ]\n [-0.10130486 0.10718811 0.02 ]\n [ 0.00306866 0.0838019 0.02 ]\n [ 0.13020852 -0.12451597 0.02 ]\n [ 0.14005555 -0.0537749 0.02 ]\n [ 0.04574902 0.10893504 0.02 ]\n [ 0.0467444 -0.14592424 0.02 ]\n [-0.07894994 0.044077 0.02 ]\n [ 0.08586127 -0.08498759 0.02 ]\n [ 0.01508772 0.14050153 0.02 ]\n [-0.11855257 0.04993099 0.02 ]\n [-0.12416388 -0.01341316 0.02 ]\n [-0.00217707 0.07596687 0.02 ]\n [ 0.01326365 -0.0793139 0.02 ]\n [-0.03185352 -0.10306741 0.02 ]\n [ 0.10374388 -0.10782811 0.02 ]\n [-0.09412129 -0.10191522 0.02 ]\n [ 0.10898699 0.01515905 0.02 ]\n [-0.01987416 0.14918058 0.02 ]\n [ 0.05797092 0.12782183 0.02 ]\n [-0.08988627 -0.09830157 0.02 ]\n [ 0.10752523 -0.12463239 0.02 ]\n [ 0.13251697 0.02835046 0.02 ]\n [-0.00824427 0.10470562 0.02 ]\n [ 0.02941108 -0.02061884 0.02 ]\n [ 0.14274527 0.05783708 0.02 ]\n [-0.00702455 0.09500886 0.02 ]\n [ 0.07210399 -0.0125406 0.02 ]\n [-0.08874827 -0.1362691 0.02 ]\n [ 0.06467499 -0.05686351 0.02 ]\n [-0.08403262 -0.14039749 0.02 ]\n [ 0.01945143 0.00736041 0.02 ]\n [ 0.12994932 0.075447 0.02 ]\n [-0.1265658 -0.05733231 0.02 ]\n [-0.05439294 -0.0329538 0.02 ]\n [-0.03829956 0.02087794 0.02 ]\n [-0.12375847 -0.11228939 0.02 ]\n [ 0.02571409 -0.08280952 0.02 ]\n [-0.0166364 0.00092139 0.02 ]\n [-0.02742331 0.13172157 0.02 ]\n [-0.04717514 -0.07573738 0.02 ]\n [-0.08176319 0.07052084 0.02 ]\n [ 0.1140781 0.08792685 0.02 ]\n [-0.03949529 0.08809353 0.02 ]\n [-0.02159007 -0.09342858 0.02 ]\n [ 0.04873155 -0.11332267 0.02 ]\n [ 0.01202128 0.1203405 0.02 ]\n [ 0.05889359 -0.11238284 0.02 ]\n [ 0.10045619 0.12138458 0.02 ]\n [-0.13860688 0.10724127 0.02 ]\n [ 0.04894812 -0.13297333 0.02 ]\n [-0.05116292 -0.07136601 0.02 ]\n [-0.02689498 -0.0069735 0.02 ]\n [ 0.00956692 0.05547203 0.02 ]\n [-0.09601606 0.07397427 0.02 ]\n [-0.12397464 -0.04502801 0.02 ]\n [ 0.03447094 0.02048505 0.02 ]\n [ 0.14209633 0.02894151 0.02 ]\n [-0.06170143 0.1268177 0.02 ]\n [ 0.05546986 -0.01083475 0.02 ]\n [ 0.10726275 -0.11893127 0.02 ]\n [-0.03747921 0.07616656 0.02 ]\n [-0.03106831 -0.08819513 0.02 ]\n [ 0.13933268 -0.10836021 0.02 ]\n [-0.00264802 -0.12704012 0.02 ]\n [-0.07796733 -0.12724935 0.02 ]\n [ 0.02977594 -0.09164963 0.02 ]\n [-0.07804497 0.1129064 0.02 ]\n [ 0.08027426 -0.11723176 0.02 ]\n [-0.12691599 -0.0010631 0.02 ]\n [-0.01213997 0.14965671 0.02 ]\n [ 0.03249139 0.04358889 0.02 ]\n [-0.14976847 -0.1146557 0.02 ]\n [ 0.00230546 0.02949895 0.02 ]\n [ 0.00400602 -0.05926618 0.02 ]\n [ 0.00911526 -0.13899684 0.02 ]\n [ 0.0769911 -0.14283736 0.02 ]\n [ 0.02331825 0.01878179 0.02 ]\n [ 0.02806854 0.08791896 0.02 ]\n [ 0.09676265 0.00163313 0.02 ]\n [-0.09722823 0.09362835 0.02 ]\n [ 0.04666524 0.13166536 0.02 ]\n [-0.11977611 0.084072 0.02 ]\n [-0.113087 -0.11918731 0.02 ]\n [-0.05503473 0.02565733 0.02 ]\n [-0.1260893 0.02594919 0.02 ]]", "desired_goal": "[[ 0.00354649 0.13513911 0.04883192]\n [-0.07151636 -0.06045266 0.02 ]\n [-0.12430525 -0.07895685 0.18025489]\n [ 0.13291684 0.00339827 0.02 ]\n [ 0.09150088 0.09238224 0.02 ]\n [ 0.01144931 -0.04701874 0.09381345]\n [ 0.03752864 0.11916414 0.02 ]\n [-0.05190832 0.14618306 0.08374216]\n [ 0.11107476 -0.06395484 0.14062963]\n [ 0.13680051 -0.08769546 0.02 ]\n [-0.11142894 -0.00021664 0.02 ]\n [-0.07475267 0.13402589 0.02 ]\n [ 0.10943928 0.10659076 0.02 ]\n [ 0.099295 -0.041716 0.16054787]\n [ 0.05782301 0.09474514 0.02 ]\n [ 0.02007505 -0.02077676 0.03881476]\n [ 0.10352243 -0.10170807 0.13154891]\n [-0.03020827 0.0652244 0.02 ]\n [-0.02388636 0.1277608 0.02 ]\n [-0.06597721 -0.01165599 0.04434394]\n [ 0.08433527 0.03175411 0.02 ]\n [-0.04009593 -0.09021138 0.03771168]\n [ 0.05817992 0.04243747 0.02 ]\n [-0.05091935 -0.0284468 0.13494757]\n [-0.10178363 -0.1499064 0.06331969]\n [-0.00252032 -0.07968014 0.03352155]\n [ 0.05932086 -0.05585572 0.04423942]\n [ 0.10555018 0.11546788 0.02 ]\n [-0.13498591 0.00189669 0.02 ]\n [-0.07926036 -0.0212679 0.0384546 ]\n [ 0.12095154 -0.12969652 0.15454616]\n [-0.10192715 0.02166885 0.09542711]\n [-0.01690733 0.02054736 0.02 ]\n [-0.14879152 0.11165307 0.06854848]\n [-0.04861513 -0.01245133 0.20700137]\n [-0.09581007 -0.03052897 0.19876648]\n [ 0.06124591 0.04850062 0.03379865]\n [-0.00427169 -0.07507924 0.16407624]\n [ 0.00051359 0.01180062 0.04717484]\n [ 0.06896955 0.05802449 0.02 ]\n [ 0.13624533 0.08037963 0.04519415]\n [ 0.08218682 -0.01833647 0.19171958]\n [ 0.04568978 -0.1368674 0.02400592]\n [-0.11323035 -0.07256608 0.10115415]\n [ 0.0219392 0.00854734 0.17273004]\n [ 0.12168128 -0.12683196 0.07451395]\n [ 0.0725406 0.07610065 0.02 ]\n [-0.03369004 0.02873205 0.12276011]\n [-0.04114374 0.02796518 0.09839004]\n [ 0.08622681 0.1001008 0.12958089]\n [ 0.13273236 -0.05785849 0.02 ]\n [ 0.03472888 0.02226789 0.02 ]\n [-0.1466619 0.06567319 0.08622544]\n [-0.08326454 0.00557399 0.03593079]\n [ 0.09967566 0.11119369 0.02 ]\n [ 0.06783781 -0.14492916 0.21616021]\n [ 0.05525001 -0.00950641 0.18824673]\n [-0.05729646 0.11395008 0.02 ]\n [ 0.02632415 0.09781985 0.04338876]\n [-0.05271485 -0.14185609 0.03094418]\n [-0.03768772 0.08158068 0.15422863]\n [ 0.03279605 0.07433199 0.02 ]\n [ 0.01802381 0.14767766 0.05933747]\n [ 0.13304804 0.00700189 0.03314219]\n [-0.13578255 0.00546665 0.02 ]\n [ 0.12712017 0.05784544 0.03458695]\n [-0.02570055 -0.11191851 0.02 ]\n [-0.00468998 0.10449788 0.15470445]\n [ 0.02411171 0.00805561 0.19299233]\n [-0.03577955 0.06714176 0.08443786]\n [-0.0739759 0.00826165 0.17219731]\n [ 0.10135102 -0.14799747 0.02 ]\n [-0.00220914 -0.05898974 0.07371356]\n [ 0.11831348 0.00621629 0.15528083]\n [-0.0860125 -0.10406128 0.15285009]\n [ 0.09189945 0.14565699 0.15647995]\n [ 0.08577969 0.01535159 0.06877764]\n [-0.02434107 0.12454059 0.1236233 ]\n [ 0.12588072 -0.12851322 0.02 ]\n [ 0.0709474 -0.14447436 0.02732674]\n [-0.01976601 -0.0865115 0.20240746]\n [ 0.14929162 0.10643639 0.06353728]\n [-0.05507571 -0.13661854 0.14581865]\n [ 0.06962947 0.1200611 0.16985779]\n [-0.1367031 -0.0084693 0.1125811 ]\n [ 0.0346387 -0.09739373 0.14311694]\n [ 0.02122693 0.0850618 0.0544784 ]\n [-0.08812641 0.06095627 0.1577019 ]\n [ 0.02273314 0.08098165 0.02 ]\n [-0.03830017 0.05456913 0.12370534]\n [-0.06507508 0.12307529 0.02 ]\n [ 0.03025929 -0.12724444 0.09006415]\n [ 0.14564711 0.01295344 0.11187137]\n [-0.07809872 0.08660791 0.02 ]\n [ 0.01243695 0.12399224 0.06523211]\n [ 0.06875071 0.07016688 0.12965922]\n [ 0.05228202 -0.02030663 0.1238964 ]\n [ 0.13309667 0.10539927 0.02 ]\n [ 0.0018092 0.01952749 0.12238319]\n [ 0.10049449 0.02896621 0.02 ]\n [ 0.13305975 -0.04217369 0.17696108]\n [-0.10200266 0.02578305 0.02 ]\n [-0.05619503 -0.08270454 0.05640195]\n [ 0.10156944 0.05764445 0.02 ]\n [ 0.0414586 0.14743793 0.03934589]\n [ 0.14472236 -0.13787995 0.04455734]\n [ 0.04456078 -0.00669343 0.12054747]\n [ 0.10679814 0.03968254 0.04358111]\n [ 0.01312268 0.10242265 0.17001522]\n [ 0.12914784 0.00373133 0.16250467]\n [-0.10390159 -0.09920901 0.12119287]\n [-0.1150623 0.10324607 0.02 ]\n [-0.12882657 -0.10473932 0.04895255]\n [ 0.06836648 -0.10735226 0.10667685]\n [ 0.06070141 0.03111272 0.12883382]\n [-0.09828907 0.11307663 0.21143563]\n [ 0.11250353 -0.1026357 0.14081223]\n [ 0.1292069 0.13126858 0.02 ]\n [ 0.13687211 0.06963366 0.02 ]\n [ 0.10612247 -0.132879 0.07021616]\n [ 0.03984474 -0.06062926 0.18485205]\n [ 0.09760577 -0.0973128 0.02 ]\n [ 0.05470556 -0.13385369 0.02 ]\n [ 0.08557593 0.08575781 0.21382721]\n [ 0.10552485 -0.00190501 0.02 ]\n [-0.14814718 0.13252743 0.03322557]\n [-0.13126002 -0.08711016 0.0798665 ]\n [ 0.04775379 -0.00836512 0.10671338]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n ...\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 ... 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cf/3BQvYe1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf9UhgVoHtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf5bCZnctYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgEBZdnkDIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDT25hBqsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf+eoUBXCCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDoxcu8K5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf8+NATqSpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf6R4WDYh/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgEFZO8CgcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCtkiUxEfdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CgCLNO/L1VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgB30BXCCSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBsXpW3jNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBKPYODradX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf8MQwblzVdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CgCRW1c+qzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBfQMYuTSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDkDIBBAwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDa0jTrmhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDHkUsWfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDDddVvMsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBFWom5UcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgAiv2oNutdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CgAe8HGCI2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf/hLCN0eVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf91LXL/0edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf7RZlnRLLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBS/CqIacdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf9iH80k4WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgE1eee4CqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf/CVSXMQmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf83oKD017dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDz39BKL9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf8FAXl8w6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgE+KmKqGUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBRd/z8P4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf9y7dSEUTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgEcbTc6/7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgB9wXqJMydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf/d7fHggpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf9ak5p8F7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgClo5HVgAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgAy26K+BZdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cf9l2W6bvxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDdYTj/+9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCcNIK+i8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgAV1kc0cfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgFUkeZG8VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgFJRVyWAxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf/RTs6aLGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf+C3Jgb6ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgFWdWhh6TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgEae2d/aydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCA3+VC5VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf/0JPZZjhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgFpzMRpUQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgECnK4hECdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCTzRx95RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgEXZFPSDzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDxJuVHFxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDOleF+NMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf+gL5ylvZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCqk2gnMMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBJ+7L+xXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf/anNxEORdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf+cOYIBzWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCNf4yoGZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBbd0zTF3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf9/VqesgddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgERj59E1EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgD+S88La3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDb1a4c3mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgB0icG1QZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf/qCEHt4SdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CgEECdrftQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDKzQNTcZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCgomG/N8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgFEiTUy57dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgEGlWXC0odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDJ9c0LtvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCIrHdXT3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBC1F6RhddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf/yZFocrBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf+7w5vLowdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cf9+fhddE9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCKq0tyxSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBYHQyAQQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgBGvva11GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgFwh1DBuXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDRLHU+cIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDBxkd3jddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgB0mrjo6kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgGR/6wdKedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgG9Q1aW5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgGidETg2qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgDErl/6O6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgHNjyOJcgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgGVfhddE9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CgCzoQWepXdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2344, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVbAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRfrwPMm99bipsddv+S0hbnACMA2luY5SKEXuTQFe5V5ihlfhFJtryKpIAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 128, "lr_schedule": {":type:": "", ":serialized:": "gAWVbgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWWM6XFVzZXJzXENsYXJhXGFuYWNvbmRhM1xlbnZzXGd5bW5lbnZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}