--- library_name: transformers license: apache-2.0 base_model: cis-lmu/glot500-base tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy model-index: - name: glot500_model_fr_gsd results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies type: universal_dependencies config: fr_gsd split: test args: fr_gsd metrics: - name: Precision type: precision value: 0.9608762098828324 - name: Recall type: recall value: 0.9602891762549639 - name: F1 type: f1 value: 0.9605826033815442 - name: Accuracy type: accuracy value: 0.9654301806175957 --- # glot500_model_fr_gsd This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on the universal_dependencies dataset. It achieves the following results on the evaluation set: - Loss: 0.1267 - Precision: 0.9609 - Recall: 0.9603 - F1: 0.9606 - Accuracy: 0.9654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9175 | 1.0 | 904 | 0.1582 | 0.9548 | 0.9541 | 0.9544 | 0.9601 | | 0.1162 | 2.0 | 1808 | 0.1267 | 0.9609 | 0.9603 | 0.9606 | 0.9654 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3