--- license: llama3 library_name: peft tags: - axolotl - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct model-index: - name: math-llama-3-8b-instruct results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml adapter: qlora base_model: meta-llama/Meta-Llama-3-8B-Instruct base_model_config: meta-llama/Meta-Llama-3-8B-Instruct datasets: - path: vicgalle/alpaca-gpt4 type: alpaca flash_attention: true gradient_accumulation_steps: 4 gradient_checkpointing: true hf_use_auth_token: true hub_model_id: ibivibiv/llama-3-8b-instruct-alpaca-gpt-4 learning_rate: 0.0002 load_in_4bit: true logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 2 model_type: AutoModelForCausalLM num_epochs: 3 optimizer: paged_adamw_32bit output_dir: /job/out sample_packing: true save_safetensors: true sequence_len: 4096 special_tokens: pad_token: <|end_of_text|> tokenizer_type: AutoTokenizer wandb_project: TuneStudio wandb_run_id: mathllama wandb_watch: 'true' warmup_steps: 10 ```

# math-llama-3-8b-instruct This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the alpaca-gpt-4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1