Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,6 @@ An updated version of Standard-Based Impact Classification (SBIC) method of CSR
|
|
12 |
|
13 |
Instructions on how to run the code below.
|
14 |
|
15 |
-
---
|
16 |
|
17 |
# **Multilabel Classification Step**
|
18 |
|
@@ -57,7 +56,7 @@ The script follows these main steps:
|
|
57 |
2. **Perform Cosine Similarity Search**: Finds the most relevant reports (sentences) using `semantic_search` from `sentence-transformers`.
|
58 |
3. **Apply K-Nearest Neighbor (KNN) Algorithm**: Selects top similar reports (sentences) and aggregates predictions.
|
59 |
4. **Use Sigmoid Activation for Classification**: Applies a threshold to generate final classification outputs.
|
60 |
-
5. **Save Results**: Exports `df_results_0_50k.csv` containing the
|
61 |
|
62 |
## **Output File**
|
63 |
|
|
|
12 |
|
13 |
Instructions on how to run the code below.
|
14 |
|
|
|
15 |
|
16 |
# **Multilabel Classification Step**
|
17 |
|
|
|
56 |
2. **Perform Cosine Similarity Search**: Finds the most relevant reports (sentences) using `semantic_search` from `sentence-transformers`.
|
57 |
3. **Apply K-Nearest Neighbor (KNN) Algorithm**: Selects top similar reports (sentences) and aggregates predictions.
|
58 |
4. **Use Sigmoid Activation for Classification**: Applies a threshold to generate final classification outputs.
|
59 |
+
5. **Save Results**: Exports `df_results_0_50k.csv` containing the processed data for the first 50k of records.
|
60 |
|
61 |
## **Output File**
|
62 |
|