{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5fda577b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 6000640, "_total_timesteps": 6000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686224811555936078, "learning_rate": 0.005, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbgy7z29Hq6GHvSugRlH7a1dH06c7f0OQAAgD8AAIA/M5WePGxW17ubPnQ8MSqMPHqJKD3ws2y9AACAPwAAgD/NaIG7w9leur34TLdeoDqy4H+aOkoQajYAAIA/AACAP2Zk6DyFS6i5pHUBO7FxADSmKW470FSHMwAAgD8AAIA/HZeLPk5LQT/CCds8H9H3vmoduz6oOR2+AAAAAAAAAABm1E68wwkyugKlTTuTxMU3Fu6IuoZKF7oAAIA/AACAPzPbGD326Ai6mjnJO1lQ/DciASa7EPooNgAAgD8AAIA/WgmFvqZ8YD/efme+X33Wvtgsnb6zm+w8AAAAAAAAAADtaj8+HpuyP4P59T7sB2a+99W6PlQdmD4AAAAAAAAAAE3WXb1cKxq6EbEeOSKTJjTlgTs7HjE9uAAAgD8AAIA/APBzPFKxy7uI3Tc7q5WTPJXMIT2rDHm9AACAPwAAgD8zuKo8DQsnPqVGHr6ESq6+gbOxve1TQj0AAAAAAAAAAAB0N7yPqmu6cNxss61OHazLERM7Ru2+MwAAgD8AAIA/mhNKvClsSTl+/by6IuI4M3dBN7yrGOg5AACAPwAAgD/N6Jo7wxV0usPiH7gz3RyzZTImOw0ZOzcAAIA/AACAPya1Br4dBW4/vnNFO/tBBb+LlTS+g2wsPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLTpTho/RqMAWyUTcgCjAF0lEdA2fbLwkPcz3V9lChoBkdAcL4QqI7/42gHTfMBaAhHQNn222HYYix1fZQoaAZHQHOnRbGFSKpoB0vsaAhHQNn28Pt6X0J1fZQoaAZHQG8ZbayrxRVoB01oAmgIR0DZ9z7qQiiZdX2UKGgGR0Bv26GQCCBgaAdNtgFoCEdA2fdccophF3V9lChoBkdAYeHnFHavimgHTegDaAhHQNn3emZiNKh1fZQoaAZHQGJ51lXiiqRoB03oA2gIR0DZ94jYNAkcdX2UKGgGR0ByHqNdZ7ojaAdNWgFoCEdA2fefeOXE63V9lChoBkdAcfLo2XLNfWgHTTUCaAhHQNn3o6+WWyF1fZQoaAZHQHF4yn+AEuBoB00ZAWgIR0DZ98p7+kxidX2UKGgGR0Bi80cyWRigaAdN6ANoCEdA2ffNf642CXV9lChoBkdAcl60ihWYGGgHTWMBaAhHQNn3+L5Ec811fZQoaAZHQHOU+qFRHgBoB02IAWgIR0DZ9/mEug6EdX2UKGgGR0BxyAwEhaC+aAdNaQFoCEdA2fgYUdaMaXV9lChoBkdAcf3d8zAN5WgHTdoBaAhHQNn4ORQSBbx1fZQoaAZHQHFSpAt4A0doB01HAmgIR0DZ+EfXPJJYdX2UKGgGR0Byrvm2b5M2aAdNngNoCEdA2fhKnp0OmXV9lChoBkdAcNm7wazeGmgHTYUBaAhHQNn4YaSxJNF1fZQoaAZHQG/1zrNW2gFoB00zAmgIR0DZ+HvPnjhldX2UKGgGR0BvpDpqynk1aAdNVgFoCEdA2fiZAxi5NHV9lChoBkdAcQP8fV7QcGgHTRsCaAhHQNn47ohEBsB1fZQoaAZHQHAuQeeWfK9oB01RAWgIR0DZ+PZRMvh7dX2UKGgGR0ByDzGS6lLwaAdNygFoCEdA2fkvS00FbHV9lChoBkdAcMG6NEPUa2gHTQkBaAhHQNn5OOotL+R1fZQoaAZHQHC/AiqyWzFoB0v8aAhHQNn5TGc4HX51fZQoaAZHQHA3X5eqrBFoB01eAWgIR0DZ+U48TzundX2UKGgGR0BwgQHzH0btaAdN/wFoCEdA2flXzYVZcXV9lChoBkdAcWGpJwsGxGgHTYoDaAhHQNn5cTGkvbp1fZQoaAZHQHDqE+kgwGpoB02KAmgIR0DZ+ZVoFmnPdX2UKGgGR0Byagn9ehPCaAdL8GgIR0DZ+ayV+qiodX2UKGgGR0BysAYJmdy1aAdNQwFoCEdA2fniV58jRnV9lChoBkdAcGSpWFN+LGgHTQwBaAhHQNn6Gia7Vax1fZQoaAZHQHIE1fZ26kJoB00mAWgIR0DZ+hw+B6KMdX2UKGgGR0BtrdBSk0rLaAdNYANoCEdA2foirilzl3V9lChoBkdAcIMg3cYZVGgHTQgCaAhHQNn6PWwaBI51fZQoaAZHQHGfnaakRBhoB02OAmgIR0DZ+lIvL5h0dX2UKGgGR0ByJJdUsFt9aAdNFQFoCEdA2fqABaLXMHV9lChoBkdAcVNx46fapWgHTTwDaAhHQNn7a7fk3jx1fZQoaAZHQGl51nM+u/1oB03oA2gIR0DZ+21DohZAdX2UKGgGR0Bx22mHgxagaAdNiwFoCEdA2ftw2xIJ7nV9lChoBkdAcq+HfMwDeWgHTRsBaAhHQNn7f67ROUN1fZQoaAZHQHGhTRlYlppoB02ZAWgIR0DZ+4D0163RdX2UKGgGR0Buu2apgkTpaAdNiAFoCEdA2fuKAVwgknV9lChoBkdAcXNMc6vJR2gHTQkBaAhHQNn7nfKp1ih1fZQoaAZHQHGTmJBPbfxoB0vVaAhHQNn7oZPhybR1fZQoaAZHQHCb/zFuNxVoB00DAWgIR0DZ+74f7rLRdX2UKGgGR0Bxpt2IO6NEaAdL7WgIR0DZ+8J8XvYwdX2UKGgGR0BvTPAwfyPNaAdN1gNoCEdA2fveAaNuL3V9lChoBkdAcgABltj0+WgHTUUBaAhHQNn74bwnYxt1fZQoaAZHQHE2AXhwVCZoB03JA2gIR0DZ/AIEHMUzdX2UKGgGR0Bvtd4JNTLoaAdL3mgIR0DZ/ASdAgPmdX2UKGgGR0Bx+x7NSqEOaAdNPwFoCEdA2fwHATZg5XV9lChoBkdAccslu3trsWgHTR8BaAhHQNn8ENHMEA51fZQoaAZHQHG7mK64DtBoB00dAWgIR0DZ/Ber8zhxdX2UKGgGR0BxhQLYwqRVaAdNCgFoCEdA2fwdNwiqyXV9lChoBkdAcwE9tuUD+2gHTQoBaAhHQNn8KDYAbQ11fZQoaAZHQHHxCwbEP2BoB00KAWgIR0DZ/EDGMn7YdX2UKGgGR0Bx1H+OwPiDaAdL4WgIR0DZ/EdwwTM8dX2UKGgGR0BwFeM3qAz6aAdNpgFoCEdA2fxnRBu4w3V9lChoBkdAdADAtnPE9GgHTccBaAhHQNn8gah11W91fZQoaAZHQHD4g5FPSD1oB009AWgIR0DZ/IfSQYDUdX2UKGgGR0BybwWSEDhcaAdNJAFoCEdA2fyTVX3g1nV9lChoBkdAcNJVSXMQmWgHS/hoCEdA2fydIp6QeXV9lChoBkdAcefF2V3Ux2gHTbcBaAhHQNn8qLXL/0d1fZQoaAZHQHL29yT6i0xoB01LAWgIR0DZ/K1+nZTRdX2UKGgGR0BxdxLsa86FaAdL7WgIR0DZ/K11xKg7dX2UKGgGR0Bk2u/rSmZWaAdN6ANoCEdA2fzDivxH5XV9lChoBkdAcECwUg0TDmgHTSUBaAhHQNn816VUuL91fZQoaAZHQHGexTCLuQZoB01mAWgIR0DZ/NnyI55rdX2UKGgGR0Bx/dri2lVMaAdNbAFoCEdA2fzbEXLvC3V9lChoBkdAcOfTWXkYGmgHS/1oCEdA2fzfoRZlnXV9lChoBkdAcrTCGN70F2gHTW8BaAhHQNn86TLwF1V1fZQoaAZHQHGY+bqhUR5oB0vHaAhHQNn9Ct8eCCl1fZQoaAZHQHK/8hxHXmNoB0vsaAhHQNn9C3zDn/11fZQoaAZHQHHF9xQzk6toB02QAWgIR0DZ/S4bvPTodX2UKGgGR0BxtMa0hNdraAdL5GgIR0DZ/TAb3oLYdX2UKGgGR0ByyxUipvP1aAdNNQFoCEdA2f01zvqkdnV9lChoBkdAbpH95yEL6WgHTWsBaAhHQNn9Ph4hUzd1fZQoaAZHQHJGMmrsByVoB00cAWgIR0DZ/VGgL7XQdX2UKGgGR0BvydYnv2GqaAdNKAJoCEdA2f1eJuVHF3V9lChoBkdAcHZMWXTmXGgHS9xoCEdA2f1sFSsKcHV9lChoBkdAcoDPaL4ve2gHS/poCEdA2f1t9XtBwHV9lChoBkdAcceVOsT37GgHTUEBaAhHQNn9f5AD7qJ1fZQoaAZHQHC3DKYAsCloB02xAWgIR0DZ/Y7TnaFmdX2UKGgGR0Bxe/cHnlnzaAdNngFoCEdA2f2ZbUgB93V9lChoBkdAcNYa5f+jumgHTUwBaAhHQNn9nCc0+C91fZQoaAZHQHJl7fgrH2hoB01YAWgIR0DZ/aCD6FdtdX2UKGgGR0BxwqaDwpfAaAdL6GgIR0DZ/bWcI7eVdX2UKGgGR0BxeFQm/nGLaAdL4GgIR0DZ/bYdhiLEdX2UKGgGR0Bxp5n3+MqCaAdL2mgIR0DZ/bv889wFdX2UKGgGR0By1MnXumaZaAdNLAFoCEdA2f2+SwGGEnV9lChoBkdAcl3GetjkMmgHTUQBaAhHQNn90AoPTXt1fZQoaAZHQG+Co1+AmRhoB0veaAhHQNn91hmseXB1fZQoaAZHQHEmpL/S6UdoB02iAWgIR0DZ/dd0ihWYdX2UKGgGR0BxfRvcafjCaAdL0GgIR0DZ/gNI5HVgdX2UKGgGR0BxzfCMxXXAaAdNEgFoCEdA2f4cSTyJ9HV9lChoBkdAcZuHi3ocJmgHS8NoCEdA2f5VWuX/pHV9lChoBkdAcg54tpVS42gHTRoBaAhHQNn+WShBZ6l1fZQoaAZHQHK1cMd92HNoB01fAWgIR0DZ/mOeUY8/dX2UKGgGR0BxkOm1pj+aaAdNlwFoCEdA2f5/QarFO3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1172, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1280, "gamma": 0.99999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/QAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz90euFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}