"""optionional argument parsing""" # pylint: disable=C0103, C0301 import argparse import datetime import os import re import shutil import time import torch import torch.distributed as dist import torch.backends.cudnn as cudnn from utils import interact from utils import str2bool, int2str import template # Training settings parser = argparse.ArgumentParser(description='Dynamic Scene Deblurring') # Device specifications group_device = parser.add_argument_group('Device specs') group_device.add_argument('--seed', type=int, default=-1, help='random seed') group_device.add_argument('--num_workers', type=int, default=7, help='the number of dataloader workers') group_device.add_argument('--device_type', type=str, choices=('cpu', 'cuda'), default='cuda', help='device to run models') group_device.add_argument('--device_index', type=int, default=0, help='device id to run models') group_device.add_argument('--n_GPUs', type=int, default=1, help='the number of GPUs for training') group_device.add_argument('--distributed', type=str2bool, default=False, help='use DistributedDataParallel instead of DataParallel for better speed') group_device.add_argument('--launched', type=str2bool, default=False, help='identify if main.py was executed from launch.py. Do not set this to be true using main.py.') group_device.add_argument('--master_addr', type=str, default='127.0.0.1', help='master address for distributed') group_device.add_argument('--master_port', type=int2str, default='8023', help='master port for distributed') group_device.add_argument('--dist_backend', type=str, default='nccl', help='distributed backend') group_device.add_argument('--init_method', type=str, default='env://', help='distributed init method URL to discover peers') group_device.add_argument('--rank', type=int, default=0, help='rank of the distributed process (gpu id). 0 is the master process.') group_device.add_argument('--world_size', type=int, default=1, help='world_size for distributed training (number of GPUs)') # Data group_data = parser.add_argument_group('Data specs') group_data.add_argument('--data_root', type=str, default='/data/ssd/public/czli/deblur', help='dataset root location') group_data.add_argument('--dataset', type=str, default=None, help='training/validation/test dataset name, has priority if not None') group_data.add_argument('--data_train', type=str, default='GOPRO_Large', help='training dataset name') group_data.add_argument('--data_val', type=str, default=None, help='validation dataset name') group_data.add_argument('--data_test', type=str, default='GOPRO_Large', help='test dataset name') group_data.add_argument('--blur_key', type=str, default='blur_gamma', choices=('blur', 'blur_gamma'), help='blur type from camera response function for GOPRO_Large dataset') group_data.add_argument('--rgb_range', type=int, default=255, help='RGB pixel value ranging from 0') # Model group_model = parser.add_argument_group('Model specs') group_model.add_argument('--model', type=str, default='RecLamResNet', help='model architecture') group_model.add_argument('--pretrained', type=str, default='', help='pretrained model location') group_model.add_argument('--n_scales', type=int, default=5, help='multi-scale deblurring level') group_model.add_argument('--detach', type=str2bool, default=False, help='detach between recurrence') group_model.add_argument('--gaussian_pyramid', type=str2bool, default=True, help='gaussian pyramid input/target') group_model.add_argument('--n_resblocks', type=int, default=19, help='number of residual blocks per scale') group_model.add_argument('--n_feats', type=int, default=64, help='number of feature maps') group_model.add_argument('--kernel_size', type=int, default=5, help='size of conv kernel') group_model.add_argument('--downsample', type=str, choices=('Gaussian', 'bicubic', 'stride'), default='Gaussian', help='input pyramid generation method') group_model.add_argument('--precision', type=str, default='single', choices=('single', 'half'), help='FP precision for test(single | half)') # amp group_amp = parser.add_argument_group('AMP specs') group_amp.add_argument('--amp', type=str2bool, default=False, help='use automatic mixed precision training') group_amp.add_argument('--init_scale', type=float, default=1024., help='initial loss scale') # Training group_train = parser.add_argument_group('Training specs') group_train.add_argument('--patch_size', type=int, default=256, help='training patch size') group_train.add_argument('--batch_size', type=int, default=16, help='input batch size for training') group_train.add_argument('--split_batch', type=int, default=1, help='split a minibatch into smaller chunks') group_train.add_argument('--augment', type=str2bool, default=True, help='train with data augmentation') # Testing group_test = parser.add_argument_group('Testing specs') group_test.add_argument('--validate_every', type=int, default=10, help='do validation at every N epochs') group_test.add_argument('--test_every', type=int, default=10, help='do test at every N epochs') # group_test.add_argument('--chop', type=str2bool, default=False, help='memory-efficient forward') # group_test.add_argument('--self_ensemble', type=str2bool, default=False, help='self-ensembled testing') # Action group_action = parser.add_argument_group('Source behavior') group_action.add_argument('--do_train', type=str2bool, default=True, help='do train the model') group_action.add_argument('--do_validate', type=str2bool, default=True, help='do validate the model') group_action.add_argument('--do_test', type=str2bool, default=True, help='do test the model') group_action.add_argument('--demo', type=str2bool, default=False, help='demo') group_action.add_argument('--demo_input_dir', type=str, default='', help='demo input directory') group_action.add_argument('--demo_output_dir', type=str, default='', help='demo output directory') # Optimization group_optim = parser.add_argument_group('Optimization specs') group_optim.add_argument('--lr', type=float, default=1e-4, help='learning rate') group_optim.add_argument('--milestones', type=int, nargs='+', default=[500, 750, 900], help='learning rate decay per N epochs') group_optim.add_argument('--scheduler', default='step', choices=('step', 'plateau'), help='learning rate scheduler type') group_optim.add_argument('--gamma', type=float, default=0.5, help='learning rate decay factor for step decay') group_optim.add_argument('--optimizer', default='ADAM', choices=('SGD', 'ADAM', 'RMSprop'), help='optimizer to use (SGD | ADAM | RMSProp)') group_optim.add_argument('--momentum', type=float, default=0.9, help='SGD momentum') group_optim.add_argument('--betas', type=float, nargs=2, default=(0.9, 0.999), help='ADAM betas') group_optim.add_argument('--epsilon', type=float, default=1e-8, help='ADAM epsilon') group_optim.add_argument('--weight_decay', type=float, default=0, help='weight decay') group_optim.add_argument('--clip', type=float, default=0, help='weight decay') # Loss group_loss = parser.add_argument_group('Loss specs') group_loss.add_argument('--loss', type=str, default='1*MSE', help='loss function configuration') group_loss.add_argument('--metric', type=str, default='PSNR,SSIM', help='metric function configuration. ex) None | PSNR | SSIM | PSNR,SSIM') group_loss.add_argument('--decay_gamma', type=float, default=0.6, help='gamma decay') # Logging group_log = parser.add_argument_group('Logging specs') group_log.add_argument('--save_dir', type=str, default='', help='subdirectory to save experiment logs') # group_log.add_argument('--load_dir', type=str, default='', help='subdirectory to load experiment logs') group_log.add_argument('--start_epoch', type=int, default=-1, help='(re)starting epoch number') group_log.add_argument('--end_epoch', type=int, default=1000, help='ending epoch number') group_log.add_argument('--load_epoch', type=int, default=-1, help='epoch number to load model (start_epoch-1 for training, start_epoch for testing)') group_log.add_argument('--save_every', type=int, default=10, help='save model/optimizer at every N epochs') group_log.add_argument('--save_results', type=str, default='part', choices=('none', 'part', 'all'), help='save none/part/all of result images') # Debugging group_debug = parser.add_argument_group('Debug specs') group_debug.add_argument('--stay', type=str2bool, default=False, help='stay at interactive console after trainer initialization') parser.add_argument('--template', type=str, default='', help='argument template option') args = parser.parse_args() template.set_template(args) args.data_root = os.path.expanduser(args.data_root) # recognize home directory now = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') if args.save_dir == '': args.save_dir = now args.save_dir = os.path.join('../experiment', args.save_dir) os.makedirs(args.save_dir, exist_ok=True) if args.start_epoch < 0: # start from scratch or continue from the last epoch # check if there are any models saved before model_dir = os.path.join(args.save_dir, 'models') model_prefix = 'model-' if os.path.exists(model_dir): model_list = [name for name in os.listdir(model_dir) if name.startswith(model_prefix)] last_epoch = 0 for name in model_list: epochNumber = int(re.findall('\\d+', name)[0]) # model example name model-100.pt if last_epoch < epochNumber: last_epoch = epochNumber args.start_epoch = last_epoch + 1 else: # train from scratch args.start_epoch = 1 elif args.start_epoch == 0: # remove existing directory and start over if args.rank == 0: # maybe local rank shutil.rmtree(args.save_dir, ignore_errors=True) os.makedirs(args.save_dir, exist_ok=True) args.start_epoch = 1 if args.load_epoch < 0: # load_epoch == start_epoch when doing a post-training test for a specific epoch args.load_epoch = args.start_epoch - 1 if args.pretrained: if args.start_epoch <= 1: args.pretrained = os.path.join('../experiment', args.pretrained) else: print('starting from epoch {}! ignoring pretrained model path..'.format(args.start_epoch)) args.pretrained = '' if args.model == 'MSResNet': args.gaussian_pyramid = True argname = os.path.join(args.save_dir, 'args.pt') argname_txt = os.path.join(args.save_dir, 'args.txt') if args.start_epoch > 1: # load previous arguments and keep the necessary ones same if os.path.exists(argname): args_old = torch.load(argname) load_list = [] # list of arguments that are fixed # training load_list += ['patch_size'] load_list += ['batch_size'] # data format load_list += ['rgb_range'] load_list += ['blur_key'] # model architecture load_list += ['n_scales'] load_list += ['n_resblocks'] load_list += ['n_feats'] for arg_part in load_list: vars(args)[arg_part] = vars(args_old)[arg_part] if args.dataset is not None: args.data_train = args.dataset args.data_val = args.dataset if args.dataset != 'GOPRO_Large' else None args.data_test = args.dataset if args.data_val is None: args.do_validate = False if args.demo_input_dir: args.demo = True if args.demo: assert os.path.basename(args.save_dir) != now, 'You should specify pretrained directory by setting --save_dir SAVE_DIR' args.data_train = '' args.data_val = '' args.data_test = '' args.do_train = False args.do_validate = False args.do_test = False assert len(args.demo_input_dir) > 0, 'Please specify demo_input_dir!' args.demo_input_dir = os.path.expanduser(args.demo_input_dir) if args.demo_output_dir: args.demo_output_dir = os.path.expanduser(args.demo_output_dir) args.save_results = 'all' if args.amp: args.precision = 'single' # model parameters should stay in fp32 if args.seed < 0: args.seed = int(time.time()) # save arguments if args.rank == 0: torch.save(args, argname) with open(argname_txt, 'a') as file: file.write('execution at {}\n'.format(now)) for key in args.__dict__: file.write(key + ': ' + str(args.__dict__[key]) + '\n') file.write('\n') # device and type if args.device_type == 'cuda' and not torch.cuda.is_available(): raise Exception("GPU not available!") if not args.distributed: args.rank = 0 def setup(args): cudnn.benchmark = True if args.distributed: os.environ['MASTER_ADDR'] = args.master_addr os.environ['MASTER_PORT'] = args.master_port args.device_index = args.rank args.world_size = args.n_GPUs # consider single-node training # initialize the process group dist.init_process_group(args.dist_backend, init_method=args.init_method, rank=args.rank, world_size=args.world_size) args.device = torch.device(args.device_type, args.device_index) args.dtype = torch.float32 args.dtype_eval = torch.float32 if args.precision == 'single' else torch.float16 # set seed for processes (distributed: different seed for each process) # model parameters are synchronized explicitly at initial torch.manual_seed(args.seed) if args.device_type == 'cuda': torch.cuda.set_device(args.device) if args.rank == 0: torch.cuda.manual_seed_all(args.seed) return args def cleanup(args): if args.distributed: dist.destroy_process_group()