import torch.nn as nn from . import common from lambda_networks import LambdaLayer def build_model(args): return ResNet(args) class ResNet(nn.Module): def __init__( self, args, in_channels=3, out_channels=3, n_feats=None, kernel_size=None, n_resblocks=None, mean_shift=True, ): super(ResNet, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_feats = args.n_feats if n_feats is None else n_feats self.kernel_size = args.kernel_size if kernel_size is None else kernel_size self.n_resblocks = args.n_resblocks if n_resblocks is None else n_resblocks self.mean_shift = mean_shift self.rgb_range = args.rgb_range self.mean = self.rgb_range / 2 modules = [] modules.append( common.default_conv(self.in_channels, self.n_feats, self.kernel_size) ) for _ in range(self.n_resblocks // 3): modules.append(common.ResBlock(self.n_feats, self.kernel_size)) modules.append( LambdaLayer( dim=self.n_feats, dim_out=self.n_feats, r=23, dim_k=16, heads=4, dim_u=1 ) ) for _ in range(self.n_resblocks // 3): modules.append(common.ResBlock(self.n_feats, self.kernel_size)) modules.append( LambdaLayer( dim=self.n_feats, dim_out=self.n_feats, r=7, dim_k=16, heads=4, dim_u=4 ) ) for _ in range(self.n_resblocks // 3): modules.append(common.ResBlock(self.n_feats, self.kernel_size)) modules.append( common.default_conv(self.n_feats, self.n_feats, self.kernel_size) ) modules.append(common.default_conv(self.n_feats, self.out_channels, 1)) self.body = nn.Sequential(*modules) def forward(self, input): if self.mean_shift: input = input - self.mean output = self.body(input) if self.mean_shift: output = output + self.mean return output