|
import torch.nn as nn
|
|
|
|
from . import common
|
|
|
|
def build_model(args):
|
|
return ResNet(args)
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(self, args, in_channels=3, out_channels=3, n_feats=None, kernel_size=None, n_resblocks=None, mean_shift=True):
|
|
super(ResNet, self).__init__()
|
|
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
|
|
self.n_feats = args.n_feats if n_feats is None else n_feats
|
|
self.kernel_size = args.kernel_size if kernel_size is None else kernel_size
|
|
self.n_resblocks = args.n_resblocks if n_resblocks is None else n_resblocks
|
|
|
|
self.mean_shift = mean_shift
|
|
self.rgb_range = args.rgb_range
|
|
self.mean = self.rgb_range / 2
|
|
|
|
modules = []
|
|
modules.append(common.default_conv(self.in_channels, self.n_feats, self.kernel_size))
|
|
for _ in range(self.n_resblocks):
|
|
modules.append(common.ResBlock(self.n_feats, self.kernel_size))
|
|
modules.append(common.default_conv(self.n_feats, self.out_channels, self.kernel_size))
|
|
|
|
self.body = nn.Sequential(*modules)
|
|
|
|
def forward(self, input):
|
|
if self.mean_shift:
|
|
input = input - self.mean
|
|
|
|
output = self.body(input)
|
|
|
|
if self.mean_shift:
|
|
output = output + self.mean
|
|
|
|
return output
|
|
|
|
|