hyliu's picture
Upload folder using huggingface_hub
8cb1339 verified
DataParallel(
(module): RLAMBDANET(
(sub_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(add_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(head): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(body): Sequential(
(0): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(3): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(4): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(5): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(6): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(7): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(8): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(9): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(10): LambdaLayer(
(to_q): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_k): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_v): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm_q): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_v): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pos_conv): Conv3d(4, 16, kernel_size=(1, 23, 23), stride=(1, 1, 1), padding=(0, 11, 11))
)
(11): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(12): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(13): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(14): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(15): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(16): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(17): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(18): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(19): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(20): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(21): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Sequential(
(0): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
[Epoch 1] Learning rate: 1.00e-4
[1600/16000] [L1: 2.9578] 51.6+0.5s
[3200/16000] [L1: 2.0605] 47.0+0.1s
[4800/16000] [L1: 1.5746] 49.1+0.0s
[6400/16000] [L1: 1.3003] 49.3+0.0s
[8000/16000] [L1: 1.1122] 50.0+0.0s
[9600/16000] [L1: 0.9779] 49.1+0.0s
[11200/16000] [L1: 0.8768] 50.7+0.1s
[12800/16000] [L1: 0.7984] 51.7+0.1s
[14400/16000] [L1: 0.7339] 51.7+0.1s
[16000/16000] [L1: 0.6812] 51.6+0.0s
Evaluation:
DataParallel(
(module): RLAMBDANET(
(sub_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(add_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(head): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(body): Sequential(
(0): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(3): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(4): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(5): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(6): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(7): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(8): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(9): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(10): LambdaLayer(
(to_q): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_k): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_v): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm_q): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_v): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pos_conv): Conv3d(4, 16, kernel_size=(1, 23, 23), stride=(1, 1, 1), padding=(0, 11, 11))
)
(11): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(12): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(13): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(14): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(15): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(16): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(17): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(18): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(19): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(20): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(21): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Sequential(
(0): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
[Epoch 1] Learning rate: 1.00e-4
[1600/16000] [L1: 3.1531] 51.4+0.7s
[3200/16000] [L1: 2.0836] 46.7+0.1s
[4800/16000] [L1: 1.6088] 49.5+0.1s
[6400/16000] [L1: 1.3442] 50.1+0.0s
[8000/16000] [L1: 1.1582] 49.9+0.0s
[9600/16000] [L1: 1.0251] 50.1+0.0s
[11200/16000] [L1: 0.9277] 51.5+0.1s
[12800/16000] [L1: 0.8480] 50.4+0.1s
[14400/16000] [L1: 0.7845] 48.9+0.0s
[16000/16000] [L1: 0.7314] 51.3+0.0s
Evaluation:
[DIV2K x1] PSNR: 9.190 (Best: 9.190 @epoch 1)
Forward: 36.97s
Saving...
Total: 37.94s
[Epoch 2] Learning rate: 1.00e-4
[1600/16000] [L1: 0.2249] 51.2+0.9s
[3200/16000] [L1: 0.2154] 50.0+0.0s
[4800/16000] [L1: 0.2084] 49.8+0.0s
[6400/16000] [L1: 0.2035] 50.9+0.0s
[8000/16000] [L1: 0.1998] 50.0+0.0s
[9600/16000] [L1: 0.1948] 50.5+0.0s
[11200/16000] [L1: 0.1896] 49.9+0.0s
[12800/16000] [L1: 0.1847] 50.0+0.0s
[14400/16000] [L1: 0.1811] 49.3+0.0s
[16000/16000] [L1: 0.1769] 50.1+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.918 (Best: 9.190 @epoch 1)
Forward: 36.55s
Saving...
Total: 37.02s
[Epoch 3] Learning rate: 1.00e-4
[1600/16000] [L1: 0.1230] 51.5+0.8s
[3200/16000] [L1: 0.1251] 51.2+0.1s
[4800/16000] [L1: 0.1235] 49.6+0.0s
[6400/16000] [L1: 0.1227] 49.6+0.0s
[8000/16000] [L1: 0.1213] 50.1+0.0s
[9600/16000] [L1: 0.1195] 49.7+0.0s
[11200/16000] [L1: 0.1169] 49.7+0.0s
[12800/16000] [L1: 0.1151] 50.2+0.0s
[14400/16000] [L1: 0.1131] 50.1+0.0s
[16000/16000] [L1: 0.1112] 49.4+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.799 (Best: 9.190 @epoch 1)
Forward: 36.60s
Saving...
Total: 37.17s
[Epoch 4] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0919] 51.4+0.8s
[3200/16000] [L1: 0.0908] 50.5+0.1s
[4800/16000] [L1: 0.0883] 50.0+0.0s
[6400/16000] [L1: 0.0867] 50.1+0.0s
[8000/16000] [L1: 0.0855] 49.8+0.0s
[9600/16000] [L1: 0.0841] 49.0+0.0s
[11200/16000] [L1: 0.0830] 49.4+0.0s
[12800/16000] [L1: 0.0819] 51.5+0.1s
[14400/16000] [L1: 0.0811] 49.5+0.0s
[16000/16000] [L1: 0.0798] 49.4+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.825 (Best: 9.190 @epoch 1)
Forward: 36.71s
Saving...
Total: 37.21s
[Epoch 5] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0681] 50.4+0.7s
[3200/16000] [L1: 0.0675] 50.9+0.1s
[4800/16000] [L1: 0.0663] 50.1+0.0s
[6400/16000] [L1: 0.0652] 50.2+0.0s
[8000/16000] [L1: 0.0637] 48.8+0.0s
[9600/16000] [L1: 0.0631] 50.6+0.1s
[11200/16000] [L1: 0.0623] 51.2+0.1s
[12800/16000] [L1: 0.0618] 49.4+0.0s
[14400/16000] [L1: 0.0615] 49.4+0.0s
[16000/16000] [L1: 0.0606] 48.8+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.654 (Best: 9.190 @epoch 1)
Forward: 36.51s
Saving...
Total: 37.05s
[Epoch 6] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0569] 51.1+0.8s
[3200/16000] [L1: 0.0561] 51.2+0.1s
[4800/16000] [L1: 0.0533] 49.4+0.0s
[6400/16000] [L1: 0.0519] 50.4+0.0s
[8000/16000] [L1: 0.0514] 49.7+0.0s
[9600/16000] [L1: 0.0505] 50.5+0.0s
[11200/16000] [L1: 0.0496] 49.3+0.0s
[12800/16000] [L1: 0.0490] 49.5+0.0s
[14400/16000] [L1: 0.0484] 49.9+0.0s
[16000/16000] [L1: 0.0482] 49.7+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.628 (Best: 9.190 @epoch 1)
Forward: 36.45s
Saving...
Total: 37.06s
[Epoch 7] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0443] 49.7+0.9s
[3200/16000] [L1: 0.0433] 49.4+0.0s
[4800/16000] [L1: 0.0429] 50.7+0.1s
[6400/16000] [L1: 0.0425] 49.8+0.0s
[8000/16000] [L1: 0.0425] 48.9+0.0s
[9600/16000] [L1: 0.0416] 50.4+0.0s
[11200/16000] [L1: 0.0411] 49.2+0.0s
[12800/16000] [L1: 0.0403] 51.3+0.0s
[14400/16000] [L1: 0.0400] 49.7+0.0s
[16000/16000] [L1: 0.0396] 50.1+0.0s
Evaluation:
[DIV2K x1] PSNR: 9.004 (Best: 9.190 @epoch 1)
Forward: 36.78s
Saving...
Total: 37.24s
[Epoch 8] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0332] 50.7+0.7s
[3200/16000] [L1: 0.0352] 49.9+0.0s
[4800/16000] [L1: 0.0351] 49.4+0.0s
[6400/16000] [L1: 0.0351] 49.9+0.0s
[8000/16000] [L1: 0.0348] 50.1+0.0s
[9600/16000] [L1: 0.0348] 50.0+0.0s
[11200/16000] [L1: 0.0345] 51.5+0.1s
[12800/16000] [L1: 0.0343] 49.8+0.0s
[14400/16000] [L1: 0.0341] 49.8+0.0s
[16000/16000] [L1: 0.0339] 49.2+0.0s
Evaluation:
[DIV2K x1] PSNR: 9.533 (Best: 9.533 @epoch 8)
Forward: 36.63s
Saving...
Total: 37.26s
[Epoch 9] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0421] 51.3+0.8s
[3200/16000] [L1: 0.0368] 50.5+0.1s
[4800/16000] [L1: 0.0346] 50.5+0.0s
[6400/16000] [L1: 0.0341] 49.8+0.0s
[8000/16000] [L1: 0.0328] 50.5+0.1s
[9600/16000] [L1: 0.0322] 48.7+0.0s
[11200/16000] [L1: 0.0314] 51.1+0.0s
[12800/16000] [L1: 0.0307] 50.9+0.1s
[14400/16000] [L1: 0.0299] 50.8+0.1s
[16000/16000] [L1: 0.0296] 50.9+0.0s
Evaluation:
[DIV2K x1] PSNR: 9.870 (Best: 9.870 @epoch 9)
Forward: 36.44s
Saving...
Total: 37.06s
[Epoch 10] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0260] 50.7+0.9s
[3200/16000] [L1: 0.0265] 50.2+0.1s
[4800/16000] [L1: 0.0264] 49.9+0.0s
[6400/16000] [L1: 0.0257] 49.5+0.0s
[8000/16000] [L1: 0.0252] 49.2+0.0s
[9600/16000] [L1: 0.0249] 50.0+0.0s
[11200/16000] [L1: 0.0250] 49.6+0.0s
[12800/16000] [L1: 0.0248] 50.4+0.0s
[14400/16000] [L1: 0.0246] 51.4+0.1s
[16000/16000] [L1: 0.0244] 49.9+0.0s
Evaluation:
[DIV2K x1] PSNR: 10.933 (Best: 10.933 @epoch 10)
Forward: 36.68s
Saving...
Total: 37.29s
[Epoch 11] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0217] 51.0+0.9s
[3200/16000] [L1: 0.0229] 50.5+0.1s
[4800/16000] [L1: 0.0228] 49.0+0.1s
[6400/16000] [L1: 0.0230] 49.8+0.0s
[8000/16000] [L1: 0.0233] 49.5+0.0s
[9600/16000] [L1: 0.0231] 49.3+0.0s
[11200/16000] [L1: 0.0226] 49.7+0.0s
[12800/16000] [L1: 0.0223] 50.7+0.1s
[14400/16000] [L1: 0.0221] 51.0+0.0s
[16000/16000] [L1: 0.0219] 50.1+0.0s
Evaluation:
[DIV2K x1] PSNR: 12.240 (Best: 12.240 @epoch 11)
Forward: 36.70s
Saving...
Total: 37.18s
[Epoch 12] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0201] 51.4+0.8s
[3200/16000] [L1: 0.0197] 49.1+0.0s
[4800/16000] [L1: 0.0191] 49.1+0.0s
[6400/16000] [L1: 0.0194] 50.3+0.1s
[8000/16000] [L1: 0.0189] 51.3+0.1s
[9600/16000] [L1: 0.0186] 51.1+0.1s
[11200/16000] [L1: 0.0185] 50.2+0.1s
[12800/16000] [L1: 0.0183] 50.3+0.0s
[14400/16000] [L1: 0.0181] 49.3+0.0s
[16000/16000] [L1: 0.0179] 50.0+0.0s
Evaluation:
[DIV2K x1] PSNR: 13.591 (Best: 13.591 @epoch 12)
Forward: 36.60s
Saving...
Total: 37.12s
[Epoch 13] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0164] 50.8+0.7s
[3200/16000] [L1: 0.0163] 50.0+0.0s
[4800/16000] [L1: 0.0160] 50.6+0.1s
[6400/16000] [L1: 0.0163] 51.2+0.0s
[8000/16000] [L1: 0.0166] 50.4+0.0s
[9600/16000] [L1: 0.0167] 50.2+0.0s
[11200/16000] [L1: 0.0167] 50.0+0.0s
[12800/16000] [L1: 0.0165] 50.7+0.1s
[14400/16000] [L1: 0.0164] 49.6+0.0s
[16000/16000] [L1: 0.0164] 49.2+0.0s
Evaluation:
[DIV2K x1] PSNR: 15.362 (Best: 15.362 @epoch 13)
Forward: 36.53s
Saving...
Total: 37.11s
[Epoch 14] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0146] 51.1+0.7s
[3200/16000] [L1: 0.0151] 50.5+0.1s
[4800/16000] [L1: 0.0158] 50.9+0.1s
[6400/16000] [L1: 0.0154] 50.0+0.0s
[8000/16000] [L1: 0.0152] 50.9+0.1s
[9600/16000] [L1: 0.0150] 50.4+0.1s
[11200/16000] [L1: 0.0149] 49.2+0.0s
[12800/16000] [L1: 0.0147] 50.5+0.1s
[14400/16000] [L1: 0.0146] 50.7+0.1s
[16000/16000] [L1: 0.0146] 50.9+0.0s
Evaluation:
[DIV2K x1] PSNR: 17.182 (Best: 17.182 @epoch 14)
Forward: 36.60s
Saving...
Total: 37.12s
[Epoch 15] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0128] 51.5+0.7s
[3200/16000] [L1: 0.0132] 51.5+0.1s
[4800/16000] [L1: 0.0133] 51.5+0.1s
[6400/16000] [L1: 0.0133] 50.3+0.0s
[8000/16000] [L1: 0.0132] 51.2+0.1s
[9600/16000] [L1: 0.0131] 50.3+0.0s
[11200/16000] [L1: 0.0130] 50.8+0.0s
[12800/16000] [L1: 0.0130] 51.2+0.0s
[14400/16000] [L1: 0.0130] 51.3+0.1s
[16000/16000] [L1: 0.0129] 50.9+0.0s
Evaluation:
[DIV2K x1] PSNR: 18.605 (Best: 18.605 @epoch 15)
Forward: 36.79s
Saving...
Total: 37.34s
[Epoch 16] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0129] 50.9+0.8s
[3200/16000] [L1: 0.0132] 49.6+0.1s
[4800/16000] [L1: 0.0129] 50.5+0.0s
[6400/16000] [L1: 0.0130] 50.4+0.0s
[8000/16000] [L1: 0.0128] 49.5+0.0s
[9600/16000] [L1: 0.0127] 50.5+0.0s
[11200/16000] [L1: 0.0126] 48.9+0.0s
[12800/16000] [L1: 0.0126] 49.1+0.0s
[14400/16000] [L1: 0.0124] 51.1+0.1s
[16000/16000] [L1: 0.0123] 49.8+0.0s
Evaluation:
[DIV2K x1] PSNR: 19.953 (Best: 19.953 @epoch 16)
Forward: 36.52s
Saving...
Total: 37.15s
[Epoch 17] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0124] 50.7+0.8s
[3200/16000] [L1: 0.0120] 49.7+0.0s
[4800/16000] [L1: 0.0118] 49.9+0.0s
[6400/16000] [L1: 0.0117] 50.1+0.0s
[8000/16000] [L1: 0.0117] 51.0+0.1s
[9600/16000] [L1: 0.0117] 49.8+0.0s
[11200/16000] [L1: 0.0118] 49.6+0.0s
[12800/16000] [L1: 0.0119] 50.4+0.1s
[14400/16000] [L1: 0.0118] 51.3+0.1s
[16000/16000] [L1: 0.0117] 49.3+0.0s
Evaluation:
[DIV2K x1] PSNR: 20.834 (Best: 20.834 @epoch 17)
Forward: 36.51s
Saving...
Total: 37.07s
[Epoch 18] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0106] 50.8+0.8s
[3200/16000] [L1: 0.0110] 48.7+0.0s
[4800/16000] [L1: 0.0108] 49.7+0.0s
[6400/16000] [L1: 0.0108] 48.5+0.0s
[8000/16000] [L1: 0.0108] 49.8+0.0s
[9600/16000] [L1: 0.0110] 51.0+0.1s
[11200/16000] [L1: 0.0110] 51.2+0.1s
[12800/16000] [L1: 0.0109] 51.1+0.0s
[14400/16000] [L1: 0.0109] 48.8+0.0s
[16000/16000] [L1: 0.0109] 50.0+0.0s
Evaluation:
[DIV2K x1] PSNR: 21.466 (Best: 21.466 @epoch 18)
Forward: 36.63s
Saving...
Total: 37.17s
[Epoch 19] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0107] 50.9+0.9s
[3200/16000] [L1: 0.0107] 49.2+0.0s
[4800/16000] [L1: 0.0108] 49.0+0.0s
[6400/16000] [L1: 0.0109] 49.7+0.0s
[8000/16000] [L1: 0.0108] 51.0+0.1s
[9600/16000] [L1: 0.0107] 49.9+0.0s
[11200/16000] [L1: 0.0107] 49.6+0.0s
[12800/16000] [L1: 0.0106] 50.0+0.0s
[14400/16000] [L1: 0.0105] 49.5+0.0s
[16000/16000] [L1: 0.0105] 49.1+0.0s
Evaluation:
[DIV2K x1] PSNR: 21.952 (Best: 21.952 @epoch 19)
Forward: 36.57s
Saving...
Total: 37.13s
[Epoch 20] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0104] 51.2+0.7s
[3200/16000] [L1: 0.0104] 50.8+0.1s
[4800/16000] [L1: 0.0104] 51.1+0.1s
[6400/16000] [L1: 0.0103] 50.6+0.0s
[8000/16000] [L1: 0.0103] 50.3+0.0s
[9600/16000] [L1: 0.0104] 50.5+0.0s
[11200/16000] [L1: 0.0104] 50.5+0.0s
[12800/16000] [L1: 0.0103] 51.5+0.1s
[14400/16000] [L1: 0.0103] 49.3+0.0s
[16000/16000] [L1: 0.0103] 51.4+0.0s
Evaluation:
[DIV2K x1] PSNR: 22.624 (Best: 22.624 @epoch 20)
Forward: 36.49s
Saving...
Total: 37.04s
[Epoch 21] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0098] 50.9+0.7s
[3200/16000] [L1: 0.0097] 49.0+0.0s
[4800/16000] [L1: 0.0097] 51.0+0.1s
[6400/16000] [L1: 0.0097] 49.9+0.0s
[8000/16000] [L1: 0.0096] 49.5+0.0s
[9600/16000] [L1: 0.0096] 48.7+0.0s
[11200/16000] [L1: 0.0096] 48.8+0.0s
[12800/16000] [L1: 0.0096] 48.8+0.0s
[14400/16000] [L1: 0.0096] 50.4+0.0s
[16000/16000] [L1: 0.0096] 50.7+0.0s
Evaluation:
[DIV2K x1] PSNR: 22.887 (Best: 22.887 @epoch 21)
Forward: 36.52s
Saving...
Total: 37.15s
[Epoch 22] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0096] 50.9+0.9s
[3200/16000] [L1: 0.0096] 50.8+0.1s
[4800/16000] [L1: 0.0095] 51.3+0.1s
[6400/16000] [L1: 0.0097] 51.1+0.1s
[8000/16000] [L1: 0.0096] 51.1+0.1s
[9600/16000] [L1: 0.0095] 49.8+0.0s
[11200/16000] [L1: 0.0095] 48.9+0.0s
[12800/16000] [L1: 0.0094] 49.0+0.0s
[14400/16000] [L1: 0.0094] 50.2+0.0s
[16000/16000] [L1: 0.0094] 49.0+0.0s
Evaluation:
[DIV2K x1] PSNR: 23.476 (Best: 23.476 @epoch 22)
Forward: 36.75s
Saving...
Total: 37.30s
[Epoch 23] Learning rate: 1.00e-4
[1600/16000] [L1: 0.0096] 50.2+0.7s
[3200/16000] [L1: 0.1840] 50.5+0.1s
[4800/16000] [L1: 0.1394] 50.3+0.0s
[6400/16000] [L1: 0.1132] 50.1+0.1s
[8000/16000] [L1: 0.0961] 50.7+0.1s
[9600/16000] [L1: 0.0840] 50.4+0.0s
[11200/16000] [L1: 0.0751] 50.7+0.0s