hyliu's picture
Upload folder using huggingface_hub
8cb1339 verified
DataParallel(
(module): LAMBDANET(
(sub_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(add_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(head): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(body): Sequential(
(0): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(3): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(4): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(5): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(6): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(7): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(8): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(9): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(10): LambdaLayer(
(to_q): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_k): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_v): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm_q): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_v): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pos_conv): Conv3d(4, 16, kernel_size=(1, 23, 23), stride=(1, 1, 1), padding=(0, 11, 11))
)
(11): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(12): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(13): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(14): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(15): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(16): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(17): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(18): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(19): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(20): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(21): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Sequential(
(0): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
[Epoch 1] Learning rate: 1.00e-4
[1600/16000] [L1: 1.7904] 82.4+0.7s
[3200/16000] [L1: 1.6993] 74.0+0.1s
DataParallel(
(module): LAMBDANET(
(sub_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(add_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(head): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(body): Sequential(
(0): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(3): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(4): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(5): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(6): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(7): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(8): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(9): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(10): LambdaLayer(
(to_q): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_k): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_v): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm_q): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_v): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pos_conv): Conv3d(4, 16, kernel_size=(1, 23, 23), stride=(1, 1, 1), padding=(0, 11, 11))
)
(11): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(12): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(13): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(14): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(15): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(16): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(17): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(18): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(19): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(20): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(21): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Sequential(
(0): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
[Epoch 1] Learning rate: 1.00e-4
DataParallel(
(module): LAMBDANET(
(sub_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(add_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(head): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(body): Sequential(
(0): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(3): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(4): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(5): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(6): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(7): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(8): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(9): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(10): LambdaLayer(
(to_q): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_k): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_v): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm_q): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_v): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pos_conv): Conv3d(4, 16, kernel_size=(1, 23, 23), stride=(1, 1, 1), padding=(0, 11, 11))
)
(11): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(12): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(13): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(14): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(15): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(16): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(17): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(18): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(19): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(20): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(21): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Sequential(
(0): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
[Epoch 1] Learning rate: 1.00e-4
DataParallel(
(module): LAMBDANET(
(sub_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(add_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(head): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(body): Sequential(
(0): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(3): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(4): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(5): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(6): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(7): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(8): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(9): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(10): LambdaLayer(
(to_q): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_k): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_v): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm_q): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_v): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pos_conv): Conv3d(4, 16, kernel_size=(1, 23, 23), stride=(1, 1, 1), padding=(0, 11, 11))
)
(11): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(12): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(13): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(14): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(15): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(16): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(17): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(18): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(19): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(20): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(21): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Sequential(
(0): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
[Epoch 1] Learning rate: 1.00e-4
[12800/128000] [L1: 1.5900] 343.1+2.0s
[25600/128000] [L1: 1.6570] 341.3+0.1s
DataParallel(
(module): LAMBDANET(
(sub_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(add_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(head): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(body): Sequential(
(0): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(3): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(4): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(5): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(6): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(7): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(8): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(9): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(10): LambdaLayer(
(to_q): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_k): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_v): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm_q): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_v): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pos_conv): Conv3d(4, 16, kernel_size=(1, 23, 23), stride=(1, 1, 1), padding=(0, 11, 11))
)
(11): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(12): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(13): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(14): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(15): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(16): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(17): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(18): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(19): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(20): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(21): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Sequential(
(0): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
[Epoch 1] Learning rate: 1.00e-4
[1600/16000] [L1: 1.7904] 75.5+0.7s
[3200/16000] [L1: 1.6993] 70.2+0.0s
[4800/16000] [L1: 1.6920] 70.5+0.0s
[6400/16000] [L1: 1.6977] 70.5+0.1s
[8000/16000] [L1: 1.7032] 70.0+0.1s
[9600/16000] [L1: 1.7071] 69.4+0.1s
[11200/16000] [L1: 1.7094] 69.1+0.0s
[12800/16000] [L1: 1.7120] 69.1+0.1s
[14400/16000] [L1: 1.7150] 69.5+0.1s
[16000/16000] [L1: 1.7150] 68.3+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.165 (Best: 8.165 @epoch 1)
Forward: 34.67s
Saving...
Total: 35.61s
[Epoch 2] Learning rate: 1.00e-4
[1600/16000] [L1: 1.7355] 69.7+0.9s
[3200/16000] [L1: 1.7380] 68.1+0.1s
[4800/16000] [L1: 1.7339] 68.4+0.0s
[6400/16000] [L1: 1.7332] 68.1+0.0s
[8000/16000] [L1: 1.7292] 69.2+0.1s
[9600/16000] [L1: 1.7285] 68.1+0.1s
[11200/16000] [L1: 1.7290] 68.9+0.0s
[12800/16000] [L1: 1.7290] 69.2+0.0s
[14400/16000] [L1: 1.7288] 68.8+0.0s
[16000/16000] [L1: 1.7278] 68.2+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.177 (Best: 8.177 @epoch 2)
Forward: 34.33s
Saving...
Total: 34.94s
[Epoch 3] Learning rate: 1.00e-4
[1600/16000] [L1: 1.7239] 69.2+0.9s
[3200/16000] [L1: 1.7194] 69.6+0.1s
[4800/16000] [L1: 1.7211] 68.7+0.1s
[6400/16000] [L1: 1.7224] 68.9+0.0s
[8000/16000] [L1: 1.7244] 69.5+0.1s
[9600/16000] [L1: 1.7256] 69.7+0.1s
[11200/16000] [L1: 1.7250] 70.0+0.0s
[12800/16000] [L1: 1.7250] 68.9+0.0s
[14400/16000] [L1: 1.7258] 68.6+0.1s
[16000/16000] [L1: 1.7265] 67.6+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.165 (Best: 8.177 @epoch 2)
Forward: 34.60s
Saving...
Total: 35.19s
[Epoch 4] Learning rate: 1.00e-4
[1600/16000] [L1: 1.7141] 69.3+0.9s
[3200/16000] [L1: 1.7201] 69.7+0.1s
[4800/16000] [L1: 1.7263] 70.1+0.1s
[6400/16000] [L1: 1.7284] 69.6+0.1s
[8000/16000] [L1: 1.7294] 68.3+0.1s
[9600/16000] [L1: 1.7281] 69.5+0.1s
[11200/16000] [L1: 1.7236] 69.5+0.1s
[12800/16000] [L1: 1.7228] 69.6+0.1s
[14400/16000] [L1: 1.7243] 69.6+0.0s
[16000/16000] [L1: 1.7235] 69.0+0.0s
Evaluation:
[DIV2K x1] PSNR: 8.147 (Best: 8.177 @epoch 2)
Forward: 34.49s
Saving...
Total: 34.89s
[Epoch 5] Learning rate: 1.00e-4
[1600/16000] [L1: 1.7153] 69.5+0.8s
[3200/16000] [L1: 1.7273] 68.8+0.1s
[4800/16000] [L1: 1.7253] 68.8+0.1s
[6400/16000] [L1: 1.7284] 68.7+0.1s
[8000/16000] [L1: 1.7234] 70.1+0.1s
[9600/16000] [L1: 1.7242] 68.4+0.0s
[11200/16000] [L1: 1.7246] 69.6+0.1s
[12800/16000] [L1: 1.7266] 70.0+0.1s
[14400/16000] [L1: 1.7256] 69.7+0.1s
[16000/16000] [L1: 1.7252] 69.5+0.1s
Evaluation:
[DIV2K x1] PSNR: 8.170 (Best: 8.177 @epoch 2)
Forward: 34.28s
Saving...
Total: 34.76s
[Epoch 6] Learning rate: 1.00e-4
[1600/16000] [L1: 1.7266] 70.6+1.0s
[3200/16000] [L1: 1.7270] 68.5+0.0s
[4800/16000] [L1: 1.7310] 69.8+0.1s
[6400/16000] [L1: nan] 69.0+0.1s
[8000/16000] [L1: nan] 69.6+0.1s
[9600/16000] [L1: nan] 68.9+0.0s
[11200/16000] [L1: nan] 67.5+0.0s
[12800/16000] [L1: nan] 68.2+0.0s
[14400/16000] [L1: nan] 70.3+0.1s
[16000/16000] [L1: nan] 68.6+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.45s
Saving...
Total: 34.96s
[Epoch 7] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.3+0.9s
[3200/16000] [L1: nan] 68.8+0.1s
[4800/16000] [L1: nan] 69.2+0.1s
[6400/16000] [L1: nan] 68.4+0.0s
[8000/16000] [L1: nan] 69.7+0.1s
[9600/16000] [L1: nan] 70.6+0.1s
[11200/16000] [L1: nan] 69.8+0.1s
[12800/16000] [L1: nan] 69.3+0.1s
[14400/16000] [L1: nan] 68.8+0.1s
[16000/16000] [L1: nan] 70.0+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.50s
Saving...
Total: 35.03s
[Epoch 8] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 67.9+0.9s
[3200/16000] [L1: nan] 69.5+0.1s
[4800/16000] [L1: nan] 68.7+0.0s
[6400/16000] [L1: nan] 69.5+0.0s
[8000/16000] [L1: nan] 69.7+0.1s
[9600/16000] [L1: nan] 70.7+0.1s
[11200/16000] [L1: nan] 70.2+0.1s
[12800/16000] [L1: nan] 68.8+0.0s
[14400/16000] [L1: nan] 69.6+0.0s
[16000/16000] [L1: nan] 69.9+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.44s
Saving...
Total: 34.89s
[Epoch 9] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.8+1.0s
[3200/16000] [L1: nan] 69.4+0.1s
[4800/16000] [L1: nan] 70.4+0.1s
[6400/16000] [L1: nan] 70.6+0.1s
[8000/16000] [L1: nan] 69.3+0.1s
[9600/16000] [L1: nan] 70.4+0.1s
[11200/16000] [L1: nan] 70.2+0.1s
[12800/16000] [L1: nan] 69.0+0.0s
[14400/16000] [L1: nan] 69.2+0.0s
[16000/16000] [L1: nan] 68.8+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.73s
Saving...
Total: 35.26s
[Epoch 10] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.0+0.9s
[3200/16000] [L1: nan] 69.1+0.1s
[4800/16000] [L1: nan] 69.8+0.1s
[6400/16000] [L1: nan] 69.6+0.1s
[8000/16000] [L1: nan] 69.5+0.1s
[9600/16000] [L1: nan] 69.5+0.1s
[11200/16000] [L1: nan] 70.4+0.1s
[12800/16000] [L1: nan] 69.4+0.1s
[14400/16000] [L1: nan] 70.0+0.1s
[16000/16000] [L1: nan] 70.4+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.74s
Saving...
Total: 35.27s
[Epoch 11] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.8+0.8s
[3200/16000] [L1: nan] 68.7+0.1s
[4800/16000] [L1: nan] 70.5+0.1s
[6400/16000] [L1: nan] 69.4+0.1s
[8000/16000] [L1: nan] 69.0+0.1s
[9600/16000] [L1: nan] 70.6+0.1s
[11200/16000] [L1: nan] 70.6+0.1s
[12800/16000] [L1: nan] 71.2+0.1s
[14400/16000] [L1: nan] 70.9+0.1s
[16000/16000] [L1: nan] 67.7+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.78s
Saving...
Total: 35.32s
[Epoch 12] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.6+1.0s
[3200/16000] [L1: nan] 69.5+0.1s
[4800/16000] [L1: nan] 68.7+0.1s
[6400/16000] [L1: nan] 70.0+0.1s
[8000/16000] [L1: nan] 67.7+0.0s
[9600/16000] [L1: nan] 66.6+0.0s
[11200/16000] [L1: nan] 68.7+0.1s
[12800/16000] [L1: nan] 70.2+0.1s
[14400/16000] [L1: nan] 69.9+0.1s
[16000/16000] [L1: nan] 67.0+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.76s
Saving...
Total: 35.21s
[Epoch 13] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.8+0.9s
[3200/16000] [L1: nan] 69.6+0.1s
[4800/16000] [L1: nan] 70.0+0.1s
[6400/16000] [L1: nan] 69.5+0.1s
[8000/16000] [L1: nan] 70.2+0.1s
[9600/16000] [L1: nan] 71.0+0.1s
[11200/16000] [L1: nan] 69.8+0.1s
[12800/16000] [L1: nan] 68.0+0.1s
[14400/16000] [L1: nan] 71.2+0.1s
[16000/16000] [L1: nan] 70.2+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.75s
Saving...
Total: 35.43s
[Epoch 14] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.0+0.9s
[3200/16000] [L1: nan] 68.9+0.1s
[4800/16000] [L1: nan] 70.0+0.1s
[6400/16000] [L1: nan] 70.0+0.1s
[8000/16000] [L1: nan] 70.7+0.1s
[9600/16000] [L1: nan] 70.0+0.1s
[11200/16000] [L1: nan] 68.5+0.1s
[12800/16000] [L1: nan] 67.8+0.0s
[14400/16000] [L1: nan] 68.3+0.0s
[16000/16000] [L1: nan] 68.3+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.81s
Saving...
Total: 35.53s
[Epoch 15] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.8+1.0s
[3200/16000] [L1: nan] 69.9+0.1s
[4800/16000] [L1: nan] 70.1+0.1s
[6400/16000] [L1: nan] 70.0+0.1s
[8000/16000] [L1: nan] 70.5+0.1s
[9600/16000] [L1: nan] 70.0+0.1s
[11200/16000] [L1: nan] 71.3+0.1s
[12800/16000] [L1: nan] 70.8+0.1s
[14400/16000] [L1: nan] 69.4+0.1s
[16000/16000] [L1: nan] 70.0+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.69s
Saving...
Total: 35.23s
[Epoch 16] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.0+0.9s
[3200/16000] [L1: nan] 69.0+0.1s
[4800/16000] [L1: nan] 70.5+0.1s
[6400/16000] [L1: nan] 70.2+0.1s
[8000/16000] [L1: nan] 70.5+0.1s
[9600/16000] [L1: nan] 70.0+0.1s
[11200/16000] [L1: nan] 70.1+0.1s
[12800/16000] [L1: nan] 69.4+0.1s
[14400/16000] [L1: nan] 69.0+0.0s
[16000/16000] [L1: nan] 67.7+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.98s
Saving...
Total: 35.43s
[Epoch 17] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 71.0+0.9s
[3200/16000] [L1: nan] 71.1+0.1s
[4800/16000] [L1: nan] 70.2+0.1s
[6400/16000] [L1: nan] 70.2+0.1s
[8000/16000] [L1: nan] 68.3+0.0s
[9600/16000] [L1: nan] 69.1+0.0s
[11200/16000] [L1: nan] 69.7+0.0s
[12800/16000] [L1: nan] 69.4+0.1s
[14400/16000] [L1: nan] 68.8+0.0s
[16000/16000] [L1: nan] 69.5+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.82s
Saving...
Total: 35.34s
[Epoch 18] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.8+0.8s
[3200/16000] [L1: nan] 67.6+0.1s
[4800/16000] [L1: nan] 71.4+0.1s
[6400/16000] [L1: nan] 70.3+0.1s
[8000/16000] [L1: nan] 71.1+0.1s
[9600/16000] [L1: nan] 71.4+0.1s
[11200/16000] [L1: nan] 70.3+0.1s
[12800/16000] [L1: nan] 70.3+0.0s
[14400/16000] [L1: nan] 69.6+0.1s
[16000/16000] [L1: nan] 68.8+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.78s
Saving...
Total: 35.23s
[Epoch 19] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.8+0.9s
[3200/16000] [L1: nan] 69.5+0.1s
[4800/16000] [L1: nan] 69.7+0.1s
[6400/16000] [L1: nan] 70.9+0.1s
[8000/16000] [L1: nan] 70.4+0.1s
[9600/16000] [L1: nan] 70.4+0.1s
[11200/16000] [L1: nan] 70.1+0.1s
[12800/16000] [L1: nan] 69.8+0.1s
[14400/16000] [L1: nan] 70.4+0.1s
[16000/16000] [L1: nan] 69.9+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.61s
Saving...
Total: 35.23s
[Epoch 20] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.5+0.9s
[3200/16000] [L1: nan] 69.1+0.1s
[4800/16000] [L1: nan] 70.2+0.1s
[6400/16000] [L1: nan] 69.0+0.1s
[8000/16000] [L1: nan] 68.7+0.1s
[9600/16000] [L1: nan] 69.0+0.1s
[11200/16000] [L1: nan] 69.3+0.0s
[12800/16000] [L1: nan] 69.9+0.0s
[14400/16000] [L1: nan] 68.2+0.0s
[16000/16000] [L1: nan] 69.3+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.65s
Saving...
Total: 35.18s
[Epoch 21] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.1+0.9s
[3200/16000] [L1: nan] 70.3+0.1s
[4800/16000] [L1: nan] 71.0+0.1s
[6400/16000] [L1: nan] 68.4+0.0s
[8000/16000] [L1: nan] 67.9+0.0s
[9600/16000] [L1: nan] 69.7+0.0s
[11200/16000] [L1: nan] 70.3+0.1s
[12800/16000] [L1: nan] 70.0+0.1s
[14400/16000] [L1: nan] 70.6+0.1s
[16000/16000] [L1: nan] 67.9+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.75s
Saving...
Total: 35.26s
[Epoch 22] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.1+1.0s
[3200/16000] [L1: nan] 69.5+0.1s
[4800/16000] [L1: nan] 69.0+0.1s
[6400/16000] [L1: nan] 69.9+0.0s
[8000/16000] [L1: nan] 70.6+0.1s
[9600/16000] [L1: nan] 69.4+0.1s
[11200/16000] [L1: nan] 70.4+0.1s
[12800/16000] [L1: nan] 70.3+0.1s
[14400/16000] [L1: nan] 70.1+0.1s
[16000/16000] [L1: nan] 68.8+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.60s
Saving...
Total: 35.16s
[Epoch 23] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.9+0.9s
[3200/16000] [L1: nan] 69.1+0.1s
[4800/16000] [L1: nan] 70.3+0.1s
[6400/16000] [L1: nan] 69.3+0.1s
[8000/16000] [L1: nan] 69.4+0.1s
[9600/16000] [L1: nan] 69.8+0.1s
[11200/16000] [L1: nan] 71.0+0.1s
[12800/16000] [L1: nan] 70.7+0.1s
[14400/16000] [L1: nan] 70.6+0.1s
[16000/16000] [L1: nan] 69.6+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.59s
Saving...
Total: 35.13s
[Epoch 24] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.3+0.9s
[3200/16000] [L1: nan] 69.7+0.1s
[4800/16000] [L1: nan] 70.6+0.1s
[6400/16000] [L1: nan] 69.5+0.0s
[8000/16000] [L1: nan] 70.2+0.1s
[9600/16000] [L1: nan] 70.3+0.1s
[11200/16000] [L1: nan] 69.9+0.1s
[12800/16000] [L1: nan] 70.1+0.1s
[14400/16000] [L1: nan] 70.1+0.1s
[16000/16000] [L1: nan] 70.2+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.53s
Saving...
Total: 34.98s
[Epoch 25] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.4+0.9s
[3200/16000] [L1: nan] 69.4+0.1s
[4800/16000] [L1: nan] 70.4+0.1s
[6400/16000] [L1: nan] 70.2+0.1s
[8000/16000] [L1: nan] 69.3+0.1s
[9600/16000] [L1: nan] 68.9+0.1s
[11200/16000] [L1: nan] 69.1+0.0s
[12800/16000] [L1: nan] 70.4+0.1s
[14400/16000] [L1: nan] 69.7+0.1s
[16000/16000] [L1: nan] 69.3+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.52s
Saving...
Total: 35.18s
[Epoch 26] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.7+0.9s
[3200/16000] [L1: nan] 69.4+0.1s
[4800/16000] [L1: nan] 69.9+0.1s
[6400/16000] [L1: nan] 69.8+0.1s
[8000/16000] [L1: nan] 68.3+0.0s
[9600/16000] [L1: nan] 67.9+0.0s
[11200/16000] [L1: nan] 70.0+0.1s
[12800/16000] [L1: nan] 70.5+0.1s
[14400/16000] [L1: nan] 70.3+0.1s
[16000/16000] [L1: nan] 69.4+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.40s
Saving...
Total: 34.97s
[Epoch 27] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.0+0.9s
[3200/16000] [L1: nan] 68.7+0.1s
[4800/16000] [L1: nan] 69.4+0.1s
[6400/16000] [L1: nan] 69.1+0.1s
[8000/16000] [L1: nan] 70.1+0.1s
[9600/16000] [L1: nan] 69.2+0.1s
[11200/16000] [L1: nan] 69.8+0.1s
[12800/16000] [L1: nan] 68.1+0.1s
[14400/16000] [L1: nan] 70.5+0.1s
[16000/16000] [L1: nan] 69.4+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.36s
Saving...
Total: 34.87s
[Epoch 28] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.3+0.8s
[3200/16000] [L1: nan] 69.8+0.1s
[4800/16000] [L1: nan] 70.3+0.1s
[6400/16000] [L1: nan] 70.6+0.1s
[8000/16000] [L1: nan] 71.0+0.1s
[9600/16000] [L1: nan] 68.8+0.1s
[11200/16000] [L1: nan] 68.5+0.1s
[12800/16000] [L1: nan] 69.4+0.1s
[14400/16000] [L1: nan] 69.4+0.0s
[16000/16000] [L1: nan] 69.2+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.38s
Saving...
Total: 34.89s
[Epoch 29] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.6+0.9s
[3200/16000] [L1: nan] 68.6+0.0s
[4800/16000] [L1: nan] 67.4+0.0s
[6400/16000] [L1: nan] 71.1+0.1s
[8000/16000] [L1: nan] 70.0+0.1s
[9600/16000] [L1: nan] 70.8+0.1s
[11200/16000] [L1: nan] 68.6+0.1s
[12800/16000] [L1: nan] 70.3+0.1s
[14400/16000] [L1: nan] 69.4+0.0s
[16000/16000] [L1: nan] 70.5+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.51s
Saving...
Total: 35.04s
[Epoch 30] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.1+0.9s
[3200/16000] [L1: nan] 68.9+0.1s
[4800/16000] [L1: nan] 69.6+0.1s
[6400/16000] [L1: nan] 69.6+0.1s
[8000/16000] [L1: nan] 70.4+0.1s
[9600/16000] [L1: nan] 69.1+0.1s
[11200/16000] [L1: nan] 70.3+0.1s
[12800/16000] [L1: nan] 71.1+0.1s
[14400/16000] [L1: nan] 67.4+0.0s
[16000/16000] [L1: nan] 68.7+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.39s
Saving...
Total: 34.88s
[Epoch 31] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.4+0.9s
[3200/16000] [L1: nan] 70.0+0.1s
[4800/16000] [L1: nan] 69.8+0.1s
[6400/16000] [L1: nan] 71.0+0.1s
[8000/16000] [L1: nan] 70.1+0.1s
[9600/16000] [L1: nan] 70.3+0.1s
[11200/16000] [L1: nan] 69.6+0.0s
[12800/16000] [L1: nan] 70.2+0.1s
[14400/16000] [L1: nan] 69.3+0.1s
[16000/16000] [L1: nan] 68.5+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.47s
Saving...
Total: 35.01s
[Epoch 32] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.2+1.0s
[3200/16000] [L1: nan] 69.2+0.1s
[4800/16000] [L1: nan] 69.8+0.1s
[6400/16000] [L1: nan] 69.6+0.1s
[8000/16000] [L1: nan] 69.3+0.1s
[9600/16000] [L1: nan] 69.7+0.1s
[11200/16000] [L1: nan] 69.2+0.1s
[12800/16000] [L1: nan] 68.9+0.0s
[14400/16000] [L1: nan] 68.1+0.0s
[16000/16000] [L1: nan] 68.3+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.32s
Saving...
Total: 34.88s
[Epoch 33] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.1+1.0s
[3200/16000] [L1: nan] 69.3+0.1s
[4800/16000] [L1: nan] 69.1+0.1s
[6400/16000] [L1: nan] 69.5+0.1s
[8000/16000] [L1: nan] 68.7+0.1s
[9600/16000] [L1: nan] 68.2+0.0s
[11200/16000] [L1: nan] 68.9+0.0s
[12800/16000] [L1: nan] 70.1+0.1s
[14400/16000] [L1: nan] 70.9+0.1s
[16000/16000] [L1: nan] 69.8+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.33s
Saving...
Total: 34.91s
[Epoch 34] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.1+1.0s
[3200/16000] [L1: nan] 69.5+0.1s
[4800/16000] [L1: nan] 67.9+0.1s
[6400/16000] [L1: nan] 69.8+0.1s
[8000/16000] [L1: nan] 68.8+0.1s
[9600/16000] [L1: nan] 69.3+0.1s
[11200/16000] [L1: nan] 69.1+0.0s
[12800/16000] [L1: nan] 70.6+0.1s
[14400/16000] [L1: nan] 70.3+0.1s
[16000/16000] [L1: nan] 68.4+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.30s
Saving...
Total: 34.74s
[Epoch 35] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.5+0.9s
[3200/16000] [L1: nan] 69.7+0.1s
[4800/16000] [L1: nan] 69.4+0.1s
[6400/16000] [L1: nan] 70.3+0.1s
[8000/16000] [L1: nan] 70.8+0.1s
[9600/16000] [L1: nan] 69.8+0.1s
[11200/16000] [L1: nan] 69.4+0.1s
[12800/16000] [L1: nan] 69.5+0.1s
[14400/16000] [L1: nan] 70.1+0.1s
[16000/16000] [L1: nan] 69.7+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.21s
Saving...
Total: 34.73s
[Epoch 36] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.2+0.8s
[3200/16000] [L1: nan] 69.7+0.1s
[4800/16000] [L1: nan] 68.9+0.1s
[6400/16000] [L1: nan] 68.8+0.1s
[8000/16000] [L1: nan] 70.0+0.1s
[9600/16000] [L1: nan] 69.5+0.1s
[11200/16000] [L1: nan] 70.5+0.1s
[12800/16000] [L1: nan] 69.5+0.1s
[14400/16000] [L1: nan] 70.4+0.1s
[16000/16000] [L1: nan] 67.7+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.48s
Saving...
Total: 35.04s
[Epoch 37] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.0+1.0s
[3200/16000] [L1: nan] 69.2+0.1s
[4800/16000] [L1: nan] 70.5+0.1s
[6400/16000] [L1: nan] 70.5+0.1s
[8000/16000] [L1: nan] 70.0+0.1s
[9600/16000] [L1: nan] 68.7+0.0s
[11200/16000] [L1: nan] 69.6+0.1s
[12800/16000] [L1: nan] 69.4+0.1s
[14400/16000] [L1: nan] 70.0+0.1s
[16000/16000] [L1: nan] 66.5+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.49s
Saving...
Total: 34.94s
[Epoch 38] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.4+1.1s
[3200/16000] [L1: nan] 70.4+0.1s
[4800/16000] [L1: nan] 69.6+0.1s
[6400/16000] [L1: nan] 70.0+0.1s
[8000/16000] [L1: nan] 70.1+0.1s
[9600/16000] [L1: nan] 70.7+0.1s
[11200/16000] [L1: nan] 70.1+0.1s
[12800/16000] [L1: nan] 70.7+0.1s
[14400/16000] [L1: nan] 70.9+0.1s
[16000/16000] [L1: nan] 69.3+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.39s
Saving...
Total: 34.92s
[Epoch 39] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.6+0.9s
[3200/16000] [L1: nan] 68.0+0.1s
[4800/16000] [L1: nan] 70.1+0.1s
[6400/16000] [L1: nan] 70.3+0.1s
[8000/16000] [L1: nan] 69.4+0.1s
[9600/16000] [L1: nan] 69.9+0.1s
[11200/16000] [L1: nan] 69.8+0.1s
[12800/16000] [L1: nan] 69.6+0.1s
[14400/16000] [L1: nan] 69.1+0.0s
[16000/16000] [L1: nan] 68.7+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.47s
Saving...
Total: 35.03s
[Epoch 40] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.9+1.0s
[3200/16000] [L1: nan] 69.7+0.1s
[4800/16000] [L1: nan] 67.7+0.0s
[6400/16000] [L1: nan] 69.8+0.1s
[8000/16000] [L1: nan] 69.0+0.1s
[9600/16000] [L1: nan] 68.8+0.1s
[11200/16000] [L1: nan] 69.1+0.1s
[12800/16000] [L1: nan] 68.7+0.0s
[14400/16000] [L1: nan] 69.1+0.1s
[16000/16000] [L1: nan] 65.7+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.62s
Saving...
Total: 35.18s
[Epoch 41] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.8+0.9s
[3200/16000] [L1: nan] 70.4+0.1s
[4800/16000] [L1: nan] 70.3+0.1s
[6400/16000] [L1: nan] 70.8+0.1s
[8000/16000] [L1: nan] 69.6+0.1s
[9600/16000] [L1: nan] 68.2+0.1s
[11200/16000] [L1: nan] 69.4+0.1s
[12800/16000] [L1: nan] 69.9+0.1s
[14400/16000] [L1: nan] 69.0+0.0s
[16000/16000] [L1: nan] 69.6+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.41s
Saving...
Total: 34.98s
[Epoch 42] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.7+0.8s
[3200/16000] [L1: nan] 68.8+0.1s
[4800/16000] [L1: nan] 68.8+0.1s
[6400/16000] [L1: nan] 68.0+0.0s
[8000/16000] [L1: nan] 69.5+0.0s
[9600/16000] [L1: nan] 70.2+0.1s
[11200/16000] [L1: nan] 69.7+0.1s
[12800/16000] [L1: nan] 70.3+0.1s
[14400/16000] [L1: nan] 69.4+0.1s
[16000/16000] [L1: nan] 70.1+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.45s
Saving...
Total: 34.97s
[Epoch 43] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 69.4+1.0s
[3200/16000] [L1: nan] 70.4+0.1s
[4800/16000] [L1: nan] 70.3+0.1s
[6400/16000] [L1: nan] 69.9+0.1s
[8000/16000] [L1: nan] 69.7+0.0s
[9600/16000] [L1: nan] 70.8+0.1s
[11200/16000] [L1: nan] 69.4+0.1s
[12800/16000] [L1: nan] 69.1+0.1s
[14400/16000] [L1: nan] 70.0+0.1s
[16000/16000] [L1: nan] 68.9+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.48s
Saving...
Total: 34.96s
[Epoch 44] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.2+1.0s
[3200/16000] [L1: nan] 69.5+0.1s
[4800/16000] [L1: nan] 70.3+0.1s
[6400/16000] [L1: nan] 69.7+0.1s
[8000/16000] [L1: nan] 69.2+0.1s
[9600/16000] [L1: nan] 70.0+0.1s
[11200/16000] [L1: nan] 70.3+0.1s
[12800/16000] [L1: nan] 70.4+0.1s
[14400/16000] [L1: nan] 69.4+0.1s
[16000/16000] [L1: nan] 69.3+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.27s
Saving...
Total: 34.70s
[Epoch 45] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.1+0.9s
[3200/16000] [L1: nan] 69.1+0.1s
[4800/16000] [L1: nan] 69.2+0.1s
[6400/16000] [L1: nan] 70.0+0.1s
[8000/16000] [L1: nan] 70.6+0.1s
[9600/16000] [L1: nan] 70.0+0.1s
[11200/16000] [L1: nan] 70.0+0.1s
[12800/16000] [L1: nan] 69.1+0.1s
[14400/16000] [L1: nan] 70.7+0.1s
[16000/16000] [L1: nan] 69.9+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.27s
Saving...
Total: 34.84s
[Epoch 46] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.9+0.9s
[3200/16000] [L1: nan] 70.0+0.1s
[4800/16000] [L1: nan] 68.5+0.1s
[6400/16000] [L1: nan] 70.4+0.1s
[8000/16000] [L1: nan] 70.0+0.1s
[9600/16000] [L1: nan] 69.9+0.1s
[11200/16000] [L1: nan] 69.8+0.1s
[12800/16000] [L1: nan] 70.7+0.1s
[14400/16000] [L1: nan] 70.0+0.1s
[16000/16000] [L1: nan] 68.7+0.1s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.34s
Saving...
Total: 34.90s
[Epoch 47] Learning rate: 1.00e-4
[1600/16000] [L1: nan] 70.3+0.8s
[3200/16000] [L1: nan] 68.2+0.0s
[4800/16000] [L1: nan] 70.7+0.1s
[6400/16000] [L1: nan] 69.0+0.1s
[8000/16000] [L1: nan] 69.7+0.1s
[9600/16000] [L1: nan] 71.0+0.1s
[11200/16000] [L1: nan] 69.7+0.1s
[12800/16000] [L1: nan] 69.5+0.1s
[14400/16000] [L1: nan] 66.8+0.0s
[16000/16000] [L1: nan] 67.2+0.0s
Evaluation:
[DIV2K x1] PSNR: nan (Best: nan @epoch 6)
Forward: 34.39s
Saving...
Total: 34.82s