hyliu's picture
Upload folder using huggingface_hub
3ef0208 verified
DataParallel(
(module): LAMBDANET(
(sub_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(add_mean): MeanShift(3, 3, kernel_size=(1, 1), stride=(1, 1))
(head): Sequential(
(0): Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(body): Sequential(
(0): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(1): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(2): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(3): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(4): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(5): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(6): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(7): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(8): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(9): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(10): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(11): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(12): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(13): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(14): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(15): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(16): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(17): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(18): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(19): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(20): LambdaLayer(
(to_q): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_k): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(to_v): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm_q): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm_v): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pos_conv): Conv3d(4, 16, kernel_size=(1, 23, 23), stride=(1, 1, 1), padding=(0, 11, 11))
)
(21): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(22): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(23): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(24): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(25): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(26): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(27): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(28): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(29): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(30): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(31): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(32): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(33): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(34): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(35): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(36): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(37): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(38): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(39): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(40): ResBlock(
(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PReLU(num_parameters=1)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(41): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(tail): Sequential(
(0): Conv2d(64, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
[Epoch 1] Learning rate: 1.00e-4
[1600/16000] [MSE: 146.7717] 59.9+0.7s
[3200/16000] [MSE: 76.0878] 54.4+0.1s
[4800/16000] [MSE: 51.2849] 53.2+0.1s
[6400/16000] [MSE: 38.6837] 51.9+0.1s
[8000/16000] [MSE: 31.0710] 52.0+0.0s
[9600/16000] [MSE: 25.9877] 52.7+0.0s
[11200/16000] [MSE: 22.3240] 52.8+0.1s
[12800/16000] [MSE: 19.5695] 51.5+0.0s
[14400/16000] [MSE: 17.4245] 52.8+0.0s
[16000/16000] [MSE: 15.7065] 52.9+0.0s
Evaluation:
[DIV2K x10] PSNR: 12.100 (Best: 12.100 @epoch 1)
Forward: 27.35s
Saving...
Total: 28.78s
[Epoch 2] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.2109] 53.1+0.7s
[3200/16000] [MSE: 0.1936] 52.9+0.0s
[4800/16000] [MSE: 0.1842] 53.7+0.0s
[6400/16000] [MSE: 0.1762] 53.8+0.0s
[8000/16000] [MSE: 0.1673] 54.0+0.0s
[9600/16000] [MSE: 0.1595] 53.9+0.0s
[11200/16000] [MSE: 0.1526] 54.0+0.0s
[12800/16000] [MSE: 0.1473] 53.9+0.0s
[14400/16000] [MSE: 0.1430] 53.9+0.0s
[16000/16000] [MSE: 0.1392] 53.9+0.0s
Evaluation:
[DIV2K x10] PSNR: 10.353 (Best: 12.100 @epoch 1)
Forward: 26.94s
Saving...
Total: 27.55s
[Epoch 3] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0976] 49.7+0.6s
[3200/16000] [MSE: 0.0933] 52.4+0.0s
[4800/16000] [MSE: 0.0913] 50.9+0.0s
[6400/16000] [MSE: 0.0896] 51.1+0.0s
[8000/16000] [MSE: 0.0864] 50.9+0.0s
[9600/16000] [MSE: 0.0843] 50.9+0.0s
[11200/16000] [MSE: 0.0836] 53.7+0.0s
[12800/16000] [MSE: 0.0824] 54.2+0.0s
[14400/16000] [MSE: 0.0802] 53.9+0.0s
[16000/16000] [MSE: 0.0792] 53.7+0.0s
Evaluation:
[DIV2K x10] PSNR: 15.118 (Best: 15.118 @epoch 3)
Forward: 27.12s
Saving...
Total: 27.87s
[Epoch 4] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0605] 51.0+0.7s
[3200/16000] [MSE: 0.0607] 53.0+0.1s
[4800/16000] [MSE: 0.0608] 53.3+0.0s
[6400/16000] [MSE: 0.0599] 53.7+0.1s
[8000/16000] [MSE: 0.0595] 51.0+0.0s
[9600/16000] [MSE: 0.0587] 50.1+0.0s
[11200/16000] [MSE: 0.0580] 49.8+0.0s
[12800/16000] [MSE: 0.0568] 52.2+0.0s
[14400/16000] [MSE: 0.0560] 52.5+0.0s
[16000/16000] [MSE: 0.0551] 54.7+0.0s
Evaluation:
[DIV2K x10] PSNR: 13.920 (Best: 15.118 @epoch 3)
Forward: 27.07s
Saving...
Total: 27.81s
[Epoch 5] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0528] 51.1+0.6s
[3200/16000] [MSE: 0.0512] 49.5+0.0s
[4800/16000] [MSE: 0.0498] 52.0+0.0s
[6400/16000] [MSE: 0.0494] 53.6+0.0s
[8000/16000] [MSE: 0.0478] 52.5+0.0s
[9600/16000] [MSE: 0.0469] 49.6+0.0s
[11200/16000] [MSE: 0.0459] 50.4+0.0s
[12800/16000] [MSE: 0.0450] 51.2+0.0s
[14400/16000] [MSE: 0.0442] 51.1+0.0s
[16000/16000] [MSE: 0.0435] 51.2+0.0s
Evaluation:
[DIV2K x10] PSNR: 18.113 (Best: 18.113 @epoch 5)
Forward: 27.21s
Saving...
Total: 28.14s
[Epoch 6] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0361] 52.2+0.7s
[3200/16000] [MSE: 0.0380] 52.5+0.0s
[4800/16000] [MSE: 0.0368] 52.6+0.0s
[6400/16000] [MSE: 0.0354] 51.6+0.0s
[8000/16000] [MSE: 0.0354] 53.5+0.0s
[9600/16000] [MSE: 0.0348] 55.4+0.0s
[11200/16000] [MSE: 0.0344] 53.9+0.0s
[12800/16000] [MSE: 0.0338] 53.1+0.0s
[14400/16000] [MSE: 0.0334] 54.5+0.0s
[16000/16000] [MSE: 0.0331] 53.9+0.0s
Evaluation:
[DIV2K x10] PSNR: 19.006 (Best: 19.006 @epoch 6)
Forward: 27.11s
Saving...
Total: 27.85s
[Epoch 7] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0380] 52.9+0.7s
[3200/16000] [MSE: 0.0338] 53.3+0.0s
[4800/16000] [MSE: 0.0323] 53.6+0.0s
[6400/16000] [MSE: 0.0312] 54.6+0.0s
[8000/16000] [MSE: 0.0306] 50.1+0.0s
[9600/16000] [MSE: 0.0305] 48.6+0.0s
[11200/16000] [MSE: 0.0300] 51.8+0.0s
[12800/16000] [MSE: 0.0294] 54.0+0.0s
[14400/16000] [MSE: 0.0286] 54.9+0.0s
[16000/16000] [MSE: 0.0281] 53.1+0.0s
Evaluation:
[DIV2K x10] PSNR: 19.364 (Best: 19.364 @epoch 7)
Forward: 27.09s
Saving...
Total: 27.86s
[Epoch 8] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0289] 52.6+0.7s
[3200/16000] [MSE: 0.0267] 52.8+0.0s
[4800/16000] [MSE: 0.0263] 53.3+0.1s
[6400/16000] [MSE: 0.0260] 54.9+0.0s
[8000/16000] [MSE: 0.0253] 53.6+0.0s
[9600/16000] [MSE: 0.0244] 54.4+0.1s
[11200/16000] [MSE: 0.0240] 54.8+0.0s
[12800/16000] [MSE: 0.0233] 54.6+0.0s
[14400/16000] [MSE: 0.0228] 54.6+0.0s
[16000/16000] [MSE: 0.0222] 54.4+0.0s
Evaluation:
[DIV2K x10] PSNR: 20.917 (Best: 20.917 @epoch 8)
Forward: 27.09s
Saving...
Total: 27.75s
[Epoch 9] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0192] 51.3+0.6s
[3200/16000] [MSE: 0.0187] 50.5+0.0s
[4800/16000] [MSE: 0.0182] 51.1+0.0s
[6400/16000] [MSE: 0.0175] 51.3+0.0s
[8000/16000] [MSE: 0.0174] 51.1+0.0s
[9600/16000] [MSE: 0.0169] 51.2+0.0s
[11200/16000] [MSE: 0.0169] 53.9+0.0s
[12800/16000] [MSE: 0.0166] 53.6+0.1s
[14400/16000] [MSE: 0.0164] 54.0+0.0s
[16000/16000] [MSE: 0.0163] 54.4+0.0s
Evaluation:
[DIV2K x10] PSNR: 20.517 (Best: 20.917 @epoch 8)
Forward: 27.13s
Saving...
Total: 27.94s
[Epoch 10] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0140] 51.7+0.6s
[3200/16000] [MSE: 0.0141] 52.6+0.0s
[4800/16000] [MSE: 0.0141] 53.5+0.0s
[6400/16000] [MSE: 0.0137] 52.0+0.0s
[8000/16000] [MSE: 0.0135] 52.0+0.0s
[9600/16000] [MSE: 0.0132] 53.1+0.0s
[11200/16000] [MSE: 0.0132] 54.2+0.0s
[12800/16000] [MSE: 0.0130] 54.4+0.0s
[14400/16000] [MSE: 0.0128] 54.4+0.0s
[16000/16000] [MSE: 0.0127] 54.0+0.0s
Evaluation:
[DIV2K x10] PSNR: 23.348 (Best: 23.348 @epoch 10)
Forward: 27.19s
Saving...
Total: 27.97s
[Epoch 11] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0123] 53.4+0.7s
[3200/16000] [MSE: 0.0120] 53.3+0.1s
[4800/16000] [MSE: 0.0115] 54.2+0.0s
[6400/16000] [MSE: 0.0113] 54.1+0.0s
[8000/16000] [MSE: 0.0112] 51.2+0.0s
[9600/16000] [MSE: 0.0110] 51.1+0.0s
[11200/16000] [MSE: 0.0109] 52.9+0.0s
[12800/16000] [MSE: 0.0107] 54.3+0.0s
[14400/16000] [MSE: 0.0105] 52.5+0.0s
[16000/16000] [MSE: 0.0105] 52.0+0.0s
Evaluation:
[DIV2K x10] PSNR: 23.514 (Best: 23.514 @epoch 11)
Forward: 27.12s
Saving...
Total: 27.63s
[Epoch 12] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0099] 52.5+0.7s
[3200/16000] [MSE: 0.0094] 52.3+0.0s
[4800/16000] [MSE: 0.0095] 53.2+0.0s
[6400/16000] [MSE: 0.0096] 55.2+0.0s
[8000/16000] [MSE: 0.0093] 54.5+0.0s
[9600/16000] [MSE: 0.0091] 54.5+0.0s
[11200/16000] [MSE: 0.0090] 54.6+0.0s
[12800/16000] [MSE: 0.0090] 51.9+0.0s
[14400/16000] [MSE: 0.0089] 53.4+0.0s
[16000/16000] [MSE: 0.0088] 54.8+0.0s
Evaluation:
[DIV2K x10] PSNR: 25.091 (Best: 25.091 @epoch 12)
Forward: 27.12s
Saving...
Total: 28.00s
[Epoch 13] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0076] 53.8+0.6s
[3200/16000] [MSE: 0.0077] 52.3+0.0s
[4800/16000] [MSE: 0.0076] 51.3+0.0s
[6400/16000] [MSE: 0.0076] 54.8+0.0s
[8000/16000] [MSE: 0.0078] 55.8+0.1s
[9600/16000] [MSE: 0.0076] 55.6+0.1s
[11200/16000] [MSE: 0.0076] 55.5+0.0s
[12800/16000] [MSE: 0.0075] 55.2+0.0s
[14400/16000] [MSE: 0.0074] 54.6+0.1s
[16000/16000] [MSE: 0.0073] 54.4+0.0s
Evaluation:
[DIV2K x10] PSNR: 25.069 (Best: 25.091 @epoch 12)
Forward: 27.20s
Saving...
Total: 27.85s
[Epoch 14] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0066] 52.8+0.7s
[3200/16000] [MSE: 0.0067] 53.5+0.1s
[4800/16000] [MSE: 0.0066] 50.8+0.0s
[6400/16000] [MSE: 0.0066] 50.3+0.0s
[8000/16000] [MSE: 0.0065] 52.3+0.0s
[9600/16000] [MSE: 0.0065] 53.3+0.0s
[11200/16000] [MSE: 0.0064] 52.1+0.0s
[12800/16000] [MSE: 0.0064] 52.3+0.0s
[14400/16000] [MSE: 0.0064] 54.6+0.0s
[16000/16000] [MSE: 0.0064] 54.4+0.0s
Evaluation:
[DIV2K x10] PSNR: 25.140 (Best: 25.140 @epoch 14)
Forward: 27.17s
Saving...
Total: 27.83s
[Epoch 15] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0059] 53.6+0.6s
[3200/16000] [MSE: 0.0063] 52.8+0.0s
[4800/16000] [MSE: 0.0063] 53.9+0.0s
[6400/16000] [MSE: 0.0062] 51.9+0.0s
[8000/16000] [MSE: 0.0061] 52.3+0.0s
[9600/16000] [MSE: 0.0060] 54.6+0.0s
[11200/16000] [MSE: 0.0060] 54.2+0.0s
[12800/16000] [MSE: 0.0059] 52.4+0.0s
[14400/16000] [MSE: 0.0059] 50.0+0.0s
[16000/16000] [MSE: 0.0058] 50.0+0.0s
Evaluation:
[DIV2K x10] PSNR: 26.290 (Best: 26.290 @epoch 15)
Forward: 27.30s
Saving...
Total: 28.12s
[Epoch 16] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0058] 52.8+0.6s
[3200/16000] [MSE: 0.0056] 51.4+0.1s
[4800/16000] [MSE: 0.0057] 49.3+0.0s
[6400/16000] [MSE: 0.0056] 53.2+0.0s
[8000/16000] [MSE: 0.0055] 53.1+0.0s
[9600/16000] [MSE: 0.0054] 53.7+0.0s
[11200/16000] [MSE: 0.0054] 54.6+0.0s
[12800/16000] [MSE: 0.0054] 54.5+0.0s
[14400/16000] [MSE: 0.0054] 54.5+0.0s
[16000/16000] [MSE: 0.0053] 54.5+0.0s
Evaluation:
[DIV2K x10] PSNR: 26.441 (Best: 26.441 @epoch 16)
Forward: 27.22s
Saving...
Total: 27.95s
[Epoch 17] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0050] 53.6+0.7s
[3200/16000] [MSE: 0.0049] 54.0+0.0s
[4800/16000] [MSE: 0.0050] 54.6+0.1s
[6400/16000] [MSE: 0.0049] 54.6+0.0s
[8000/16000] [MSE: 0.0049] 54.3+0.0s
[9600/16000] [MSE: 0.0049] 54.4+0.0s
[11200/16000] [MSE: 0.0049] 54.4+0.0s
[12800/16000] [MSE: 0.0049] 54.3+0.0s
[14400/16000] [MSE: 0.0049] 54.9+0.0s
[16000/16000] [MSE: 0.0049] 54.0+0.0s
Evaluation:
[DIV2K x10] PSNR: 26.951 (Best: 26.951 @epoch 17)
Forward: 27.10s
Saving...
Total: 27.66s
[Epoch 18] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0047] 52.4+0.6s
[3200/16000] [MSE: 0.0048] 52.5+0.0s
[4800/16000] [MSE: 0.0048] 53.1+0.1s
[6400/16000] [MSE: 0.0048] 55.0+0.0s
[8000/16000] [MSE: 0.0048] 52.3+0.0s
[9600/16000] [MSE: 0.0048] 52.0+0.0s
[11200/16000] [MSE: 0.0048] 51.7+0.0s
[12800/16000] [MSE: 0.0048] 52.0+0.0s
[14400/16000] [MSE: 0.0047] 50.8+0.0s
[16000/16000] [MSE: 0.0047] 52.9+0.0s
Evaluation:
[DIV2K x10] PSNR: 27.172 (Best: 27.172 @epoch 18)
Forward: 27.26s
Saving...
Total: 27.94s
[Epoch 19] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0049] 54.4+0.6s
[3200/16000] [MSE: 0.0048] 52.4+0.0s
[4800/16000] [MSE: 0.0048] 52.3+0.0s
[6400/16000] [MSE: 0.0047] 51.3+0.0s
[8000/16000] [MSE: 0.0047] 50.9+0.0s
[9600/16000] [MSE: 0.0047] 54.5+0.0s
[11200/16000] [MSE: 0.0047] 54.6+0.0s
[12800/16000] [MSE: 0.0047] 52.7+0.0s
[14400/16000] [MSE: 0.0047] 55.9+0.0s
[16000/16000] [MSE: 0.0047] 55.3+0.0s
Evaluation:
[DIV2K x10] PSNR: 27.452 (Best: 27.452 @epoch 19)
Forward: 27.22s
Saving...
Total: 27.80s
[Epoch 20] Learning rate: 1.00e-4
[1600/16000] [MSE: 0.0043] 52.1+0.6s
[3200/16000] [MSE: inf] 53.6+0.0s
[4800/16000] [MSE: inf] 51.2+0.1s
[6400/16000] [MSE: inf] 50.0+0.1s
[8000/16000] [MSE: inf] 52.5+0.1s
[9600/16000] [MSE: inf] 52.2+0.1s
[11200/16000] [MSE: inf] 52.0+0.0s
[12800/16000] [MSE: inf] 51.0+0.0s
[14400/16000] [MSE: inf] 49.6+0.0s
[16000/16000] [MSE: inf] 49.0+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.92s
Saving...
Total: 27.51s
[Epoch 21] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 50.9+0.6s
[3200/16000] [MSE: inf] 50.8+0.1s
[4800/16000] [MSE: inf] 52.0+0.0s
[6400/16000] [MSE: inf] 51.9+0.1s
[8000/16000] [MSE: inf] 50.9+0.1s
[9600/16000] [MSE: inf] 51.2+0.1s
[11200/16000] [MSE: inf] 51.1+0.1s
[12800/16000] [MSE: inf] 50.0+0.0s
[14400/16000] [MSE: inf] 51.6+0.1s
[16000/16000] [MSE: inf] 45.8+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 27.00s
Saving...
Total: 27.67s
[Epoch 22] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 45.5+0.7s
[3200/16000] [MSE: inf] 45.7+0.0s
[4800/16000] [MSE: inf] 49.4+0.0s
[6400/16000] [MSE: inf] 51.4+0.1s
[8000/16000] [MSE: inf] 50.0+0.0s
[9600/16000] [MSE: inf] 49.1+0.0s
[11200/16000] [MSE: inf] 49.3+0.0s
[12800/16000] [MSE: inf] 51.0+0.1s
[14400/16000] [MSE: inf] 49.5+0.0s
[16000/16000] [MSE: inf] 47.9+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 27.01s
Saving...
Total: 27.74s
[Epoch 23] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 50.3+0.7s
[3200/16000] [MSE: inf] 50.2+0.1s
[4800/16000] [MSE: inf] 51.1+0.1s
[6400/16000] [MSE: inf] 51.1+0.1s
[8000/16000] [MSE: inf] 51.0+0.1s
[9600/16000] [MSE: inf] 50.9+0.1s
[11200/16000] [MSE: inf] 51.2+0.1s
[12800/16000] [MSE: inf] 49.2+0.0s
[14400/16000] [MSE: inf] 48.6+0.0s
[16000/16000] [MSE: inf] 49.2+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.83s
Saving...
Total: 27.51s
[Epoch 24] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.8+0.7s
[3200/16000] [MSE: inf] 49.7+0.1s
[4800/16000] [MSE: inf] 52.2+0.1s
[6400/16000] [MSE: inf] 48.4+0.0s
[8000/16000] [MSE: inf] 49.8+0.0s
[9600/16000] [MSE: inf] 50.1+0.1s
[11200/16000] [MSE: inf] 50.6+0.1s
[12800/16000] [MSE: inf] 50.7+0.1s
[14400/16000] [MSE: inf] 49.4+0.1s
[16000/16000] [MSE: inf] 50.4+0.1s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.76s
Saving...
Total: 27.39s
[Epoch 25] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.4+0.7s
[3200/16000] [MSE: inf] 50.7+0.1s
[4800/16000] [MSE: inf] 52.2+0.1s
[6400/16000] [MSE: inf] 49.8+0.1s
[8000/16000] [MSE: inf] 50.2+0.1s
[9600/16000] [MSE: inf] 49.7+0.1s
[11200/16000] [MSE: inf] 49.2+0.0s
[12800/16000] [MSE: inf] 50.7+0.1s
[14400/16000] [MSE: inf] 50.8+0.1s
[16000/16000] [MSE: inf] 50.1+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.58s
Saving...
Total: 27.10s
[Epoch 26] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.8+0.6s
[3200/16000] [MSE: inf] 50.9+0.1s
[4800/16000] [MSE: inf] 50.9+0.1s
[6400/16000] [MSE: inf] 50.0+0.1s
[8000/16000] [MSE: inf] 50.6+0.1s
[9600/16000] [MSE: inf] 49.3+0.0s
[11200/16000] [MSE: inf] 48.5+0.0s
[12800/16000] [MSE: inf] 48.7+0.0s
[14400/16000] [MSE: inf] 48.5+0.0s
[16000/16000] [MSE: inf] 48.3+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.83s
Saving...
Total: 27.99s
[Epoch 27] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.0+0.7s
[3200/16000] [MSE: inf] 50.8+0.1s
[4800/16000] [MSE: inf] 51.0+0.1s
[6400/16000] [MSE: inf] 50.0+0.1s
[8000/16000] [MSE: inf] 49.5+0.1s
[9600/16000] [MSE: inf] 49.9+0.1s
[11200/16000] [MSE: inf] 50.2+0.1s
[12800/16000] [MSE: inf] 49.8+0.0s
[14400/16000] [MSE: inf] 50.2+0.0s
[16000/16000] [MSE: inf] 49.6+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.51s
Saving...
Total: 27.01s
[Epoch 28] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.1+0.7s
[3200/16000] [MSE: inf] 49.1+0.1s
[4800/16000] [MSE: inf] 48.3+0.0s
[6400/16000] [MSE: inf] 48.9+0.0s
[8000/16000] [MSE: inf] 49.9+0.0s
[9600/16000] [MSE: inf] 50.6+0.1s
[11200/16000] [MSE: inf] 48.4+0.0s
[12800/16000] [MSE: inf] 49.7+0.0s
[14400/16000] [MSE: inf] 50.2+0.1s
[16000/16000] [MSE: inf] 49.9+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.57s
Saving...
Total: 27.08s
[Epoch 29] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.3+0.6s
[3200/16000] [MSE: inf] 49.9+0.0s
[4800/16000] [MSE: inf] 50.4+0.1s
[6400/16000] [MSE: inf] 51.1+0.0s
[8000/16000] [MSE: inf] 50.9+0.0s
[9600/16000] [MSE: inf] 49.8+0.1s
[11200/16000] [MSE: inf] 50.3+0.1s
[12800/16000] [MSE: inf] 51.3+0.1s
[14400/16000] [MSE: inf] 51.4+0.1s
[16000/16000] [MSE: inf] 48.3+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.45s
Saving...
Total: 27.12s
[Epoch 30] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.5+0.7s
[3200/16000] [MSE: inf] 49.8+0.1s
[4800/16000] [MSE: inf] 50.1+0.1s
[6400/16000] [MSE: inf] 49.9+0.0s
[8000/16000] [MSE: inf] 51.4+0.1s
[9600/16000] [MSE: inf] 49.1+0.1s
[11200/16000] [MSE: inf] 49.6+0.1s
[12800/16000] [MSE: inf] 47.7+0.0s
[14400/16000] [MSE: inf] 47.6+0.0s
[16000/16000] [MSE: inf] 47.4+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.89s
Saving...
Total: 27.49s
[Epoch 31] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.3+0.7s
[3200/16000] [MSE: inf] 46.1+0.0s
[4800/16000] [MSE: inf] 48.8+0.0s
[6400/16000] [MSE: inf] 51.6+0.1s
[8000/16000] [MSE: inf] 50.7+0.1s
[9600/16000] [MSE: inf] 50.0+0.0s
[11200/16000] [MSE: inf] 47.1+0.0s
[12800/16000] [MSE: inf] 49.1+0.0s
[14400/16000] [MSE: inf] 49.6+0.0s
[16000/16000] [MSE: inf] 49.5+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.30s
Saving...
Total: 26.88s
[Epoch 32] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.9+0.6s
[3200/16000] [MSE: inf] 49.6+0.1s
[4800/16000] [MSE: inf] 49.7+0.1s
[6400/16000] [MSE: inf] 51.0+0.1s
[8000/16000] [MSE: inf] 50.6+0.1s
[9600/16000] [MSE: inf] 51.6+0.1s
[11200/16000] [MSE: inf] 50.9+0.1s
[12800/16000] [MSE: inf] 51.2+0.1s
[14400/16000] [MSE: inf] 50.7+0.1s
[16000/16000] [MSE: inf] 50.3+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.03s
Saving...
Total: 26.69s
[Epoch 33] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.5+0.7s
[3200/16000] [MSE: inf] 51.6+0.1s
[4800/16000] [MSE: inf] 50.8+0.1s
[6400/16000] [MSE: inf] 49.2+0.1s
[8000/16000] [MSE: inf] 48.5+0.0s
[9600/16000] [MSE: inf] 50.4+0.1s
[11200/16000] [MSE: inf] 50.1+0.0s
[12800/16000] [MSE: inf] 50.5+0.1s
[14400/16000] [MSE: inf] 50.6+0.1s
[16000/16000] [MSE: inf] 50.4+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.38s
Saving...
Total: 27.04s
[Epoch 34] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 48.3+0.7s
[3200/16000] [MSE: inf] 50.4+0.1s
[4800/16000] [MSE: inf] 50.9+0.1s
[6400/16000] [MSE: inf] 49.6+0.1s
[8000/16000] [MSE: inf] 48.0+0.0s
[9600/16000] [MSE: inf] 46.5+0.0s
[11200/16000] [MSE: inf] 47.8+0.1s
[12800/16000] [MSE: inf] 50.1+0.1s
[14400/16000] [MSE: inf] 48.4+0.0s
[16000/16000] [MSE: inf] 47.7+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.64s
Saving...
Total: 27.39s
[Epoch 35] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.5+0.7s
[3200/16000] [MSE: inf] 47.1+0.0s
[4800/16000] [MSE: inf] 48.0+0.0s
[6400/16000] [MSE: inf] 48.1+0.0s
[8000/16000] [MSE: inf] 48.4+0.0s
[9600/16000] [MSE: inf] 50.8+0.1s
[11200/16000] [MSE: inf] 50.5+0.1s
[12800/16000] [MSE: inf] 50.4+0.1s
[14400/16000] [MSE: inf] 48.2+0.0s
[16000/16000] [MSE: inf] 47.9+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.53s
Saving...
Total: 27.06s
[Epoch 36] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.0+0.7s
[3200/16000] [MSE: inf] 49.5+0.1s
[4800/16000] [MSE: inf] 49.3+0.1s
[6400/16000] [MSE: inf] 49.3+0.1s
[8000/16000] [MSE: inf] 50.0+0.1s
[9600/16000] [MSE: inf] 50.6+0.1s
[11200/16000] [MSE: inf] 50.3+0.1s
[12800/16000] [MSE: inf] 49.2+0.1s
[14400/16000] [MSE: inf] 49.6+0.1s
[16000/16000] [MSE: inf] 47.9+0.1s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.56s
Saving...
Total: 27.17s
[Epoch 37] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.4+0.6s
[3200/16000] [MSE: inf] 45.1+0.1s
[4800/16000] [MSE: inf] 49.2+0.1s
[6400/16000] [MSE: inf] 49.6+0.0s
[8000/16000] [MSE: inf] 49.8+0.0s
[9600/16000] [MSE: inf] 50.6+0.1s
[11200/16000] [MSE: inf] 50.2+0.1s
[12800/16000] [MSE: inf] 50.1+0.1s
[14400/16000] [MSE: inf] 50.6+0.1s
[16000/16000] [MSE: inf] 51.7+0.1s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.04s
Saving...
Total: 26.59s
[Epoch 38] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 50.5+0.7s
[3200/16000] [MSE: inf] 51.3+0.1s
[4800/16000] [MSE: inf] 49.8+0.1s
[6400/16000] [MSE: inf] 49.1+0.1s
[8000/16000] [MSE: inf] 48.5+0.0s
[9600/16000] [MSE: inf] 48.3+0.0s
[11200/16000] [MSE: inf] 48.4+0.0s
[12800/16000] [MSE: inf] 48.4+0.0s
[14400/16000] [MSE: inf] 49.3+0.0s
[16000/16000] [MSE: inf] 49.7+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.30s
Saving...
Total: 26.93s
[Epoch 39] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 46.4+0.7s
[3200/16000] [MSE: inf] 48.9+0.0s
[4800/16000] [MSE: inf] 49.3+0.0s
[6400/16000] [MSE: inf] 49.3+0.0s
[8000/16000] [MSE: inf] 50.6+0.1s
[9600/16000] [MSE: inf] 48.6+0.1s
[11200/16000] [MSE: inf] 49.3+0.0s
[12800/16000] [MSE: inf] 48.3+0.0s
[14400/16000] [MSE: inf] 47.8+0.0s
[16000/16000] [MSE: inf] 47.4+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.58s
Saving...
Total: 27.24s
[Epoch 40] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.1+0.7s
[3200/16000] [MSE: inf] 49.7+0.1s
[4800/16000] [MSE: inf] 49.8+0.1s
[6400/16000] [MSE: inf] 50.4+0.1s
[8000/16000] [MSE: inf] 50.5+0.1s
[9600/16000] [MSE: inf] 50.5+0.1s
[11200/16000] [MSE: inf] 50.1+0.1s
[12800/16000] [MSE: inf] 50.4+0.1s
[14400/16000] [MSE: inf] 49.6+0.1s
[16000/16000] [MSE: inf] 49.9+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.30s
Saving...
Total: 27.05s
[Epoch 41] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.0+0.7s
[3200/16000] [MSE: inf] 46.9+0.1s
[4800/16000] [MSE: inf] 47.8+0.0s
[6400/16000] [MSE: inf] 48.1+0.0s
[8000/16000] [MSE: inf] 48.1+0.0s
[9600/16000] [MSE: inf] 48.0+0.0s
[11200/16000] [MSE: inf] 47.9+0.0s
[12800/16000] [MSE: inf] 48.1+0.0s
[14400/16000] [MSE: inf] 48.1+0.0s
[16000/16000] [MSE: inf] 47.8+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.51s
Saving...
Total: 27.04s
[Epoch 42] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.5+0.6s
[3200/16000] [MSE: inf] 47.7+0.0s
[4800/16000] [MSE: inf] 47.7+0.0s
[6400/16000] [MSE: inf] 48.2+0.0s
[8000/16000] [MSE: inf] 48.2+0.0s
[9600/16000] [MSE: inf] 48.3+0.0s
[11200/16000] [MSE: inf] 48.0+0.0s
[12800/16000] [MSE: inf] 48.0+0.0s
[14400/16000] [MSE: inf] 47.7+0.0s
[16000/16000] [MSE: inf] 47.5+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.61s
Saving...
Total: 27.11s
[Epoch 43] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.3+0.7s
[3200/16000] [MSE: inf] 49.2+0.1s
[4800/16000] [MSE: inf] 49.5+0.1s
[6400/16000] [MSE: inf] 50.3+0.1s
[8000/16000] [MSE: inf] 49.3+0.0s
[9600/16000] [MSE: inf] 48.5+0.0s
[11200/16000] [MSE: inf] 48.5+0.0s
[12800/16000] [MSE: inf] 48.5+0.0s
[14400/16000] [MSE: inf] 49.6+0.1s
[16000/16000] [MSE: inf] 48.2+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.43s
Saving...
Total: 27.07s
[Epoch 44] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 46.1+0.8s
[3200/16000] [MSE: inf] 46.1+0.0s
[4800/16000] [MSE: inf] 49.5+0.1s
[6400/16000] [MSE: inf] 48.6+0.0s
[8000/16000] [MSE: inf] 48.4+0.0s
[9600/16000] [MSE: inf] 48.5+0.0s
[11200/16000] [MSE: inf] 48.5+0.0s
[12800/16000] [MSE: inf] 48.5+0.0s
[14400/16000] [MSE: inf] 48.5+0.0s
[16000/16000] [MSE: inf] 49.5+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.29s
Saving...
Total: 26.78s
[Epoch 45] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 51.5+0.6s
[3200/16000] [MSE: inf] 49.2+0.1s
[4800/16000] [MSE: inf] 49.4+0.1s
[6400/16000] [MSE: inf] 49.7+0.1s
[8000/16000] [MSE: inf] 49.5+0.1s
[9600/16000] [MSE: inf] 50.2+0.1s
[11200/16000] [MSE: inf] 49.9+0.1s
[12800/16000] [MSE: inf] 50.6+0.1s
[14400/16000] [MSE: inf] 50.0+0.1s
[16000/16000] [MSE: inf] 49.5+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.23s
Saving...
Total: 26.80s
[Epoch 46] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.1+0.6s
[3200/16000] [MSE: inf] 48.6+0.0s
[4800/16000] [MSE: inf] 48.9+0.1s
[6400/16000] [MSE: inf] 49.6+0.1s
[8000/16000] [MSE: inf] 50.9+0.1s
[9600/16000] [MSE: inf] 49.7+0.0s
[11200/16000] [MSE: inf] 48.7+0.0s
[12800/16000] [MSE: inf] 50.9+0.1s
[14400/16000] [MSE: inf] 50.5+0.1s
[16000/16000] [MSE: inf] 50.2+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.15s
Saving...
Total: 26.72s
[Epoch 47] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.4+0.7s
[3200/16000] [MSE: inf] 47.6+0.0s
[4800/16000] [MSE: inf] 47.7+0.0s
[6400/16000] [MSE: inf] 47.3+0.0s
[8000/16000] [MSE: inf] 47.6+0.0s
[9600/16000] [MSE: inf] 51.5+0.1s
[11200/16000] [MSE: inf] 50.9+0.1s
[12800/16000] [MSE: inf] 50.8+0.1s
[14400/16000] [MSE: inf] 49.5+0.0s
[16000/16000] [MSE: inf] 49.5+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.12s
Saving...
Total: 26.64s
[Epoch 48] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.1+0.7s
[3200/16000] [MSE: inf] 49.6+0.1s
[4800/16000] [MSE: inf] 47.4+0.1s
[6400/16000] [MSE: inf] 49.3+0.1s
[8000/16000] [MSE: inf] 48.8+0.0s
[9600/16000] [MSE: inf] 49.4+0.1s
[11200/16000] [MSE: inf] 50.3+0.1s
[12800/16000] [MSE: inf] 50.4+0.1s
[14400/16000] [MSE: inf] 50.1+0.1s
[16000/16000] [MSE: inf] 50.0+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.16s
Saving...
Total: 26.76s
[Epoch 49] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 46.7+0.7s
[3200/16000] [MSE: inf] 46.6+0.0s
[4800/16000] [MSE: inf] 47.2+0.0s
[6400/16000] [MSE: inf] 49.9+0.1s
[8000/16000] [MSE: inf] 50.6+0.1s
[9600/16000] [MSE: inf] 50.6+0.1s
[11200/16000] [MSE: inf] 50.6+0.1s
[12800/16000] [MSE: inf] 50.7+0.0s
[14400/16000] [MSE: inf] 47.4+0.0s
[16000/16000] [MSE: inf] 47.6+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.50s
Saving...
Total: 27.16s
[Epoch 50] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 48.1+0.7s
[3200/16000] [MSE: inf] 49.7+0.1s
[4800/16000] [MSE: inf] 50.2+0.0s
[6400/16000] [MSE: inf] 48.4+0.0s
[8000/16000] [MSE: inf] 48.4+0.1s
[9600/16000] [MSE: inf] 49.0+0.1s
[11200/16000] [MSE: inf] 49.1+0.1s
[12800/16000] [MSE: inf] 50.8+0.1s
[14400/16000] [MSE: inf] 49.4+0.0s
[16000/16000] [MSE: inf] 48.2+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.32s
Saving...
Total: 27.01s
[Epoch 51] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 46.7+0.7s
[3200/16000] [MSE: inf] 50.6+0.1s
[4800/16000] [MSE: inf] 51.0+0.1s
[6400/16000] [MSE: inf] 49.7+0.1s
[8000/16000] [MSE: inf] 49.9+0.1s
[9600/16000] [MSE: inf] 50.2+0.1s
[11200/16000] [MSE: inf] 49.8+0.1s
[12800/16000] [MSE: inf] 50.1+0.1s
[14400/16000] [MSE: inf] 50.5+0.1s
[16000/16000] [MSE: inf] 49.3+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.25s
Saving...
Total: 26.73s
[Epoch 52] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 49.4+0.7s
[3200/16000] [MSE: inf] 49.5+0.1s
[4800/16000] [MSE: inf] 47.8+0.0s
[6400/16000] [MSE: inf] 48.3+0.0s
[8000/16000] [MSE: inf] 49.3+0.1s
[9600/16000] [MSE: inf] 49.9+0.1s
[11200/16000] [MSE: inf] 50.2+0.1s
[12800/16000] [MSE: inf] 50.1+0.0s
[14400/16000] [MSE: inf] 51.1+0.0s
[16000/16000] [MSE: inf] 49.3+0.1s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.11s
Saving...
Total: 26.81s
[Epoch 53] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 48.4+0.7s
[3200/16000] [MSE: inf] 44.0+0.1s
[4800/16000] [MSE: inf] 46.1+0.1s
[6400/16000] [MSE: inf] 50.4+0.1s
[8000/16000] [MSE: inf] 48.4+0.1s
[9600/16000] [MSE: inf] 45.0+0.1s
[11200/16000] [MSE: inf] 44.7+0.0s
[12800/16000] [MSE: inf] 44.1+0.0s
[14400/16000] [MSE: inf] 45.1+0.1s
[16000/16000] [MSE: inf] 44.6+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.81s
Saving...
Total: 27.49s
[Epoch 54] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 46.9+0.7s
[3200/16000] [MSE: inf] 49.4+0.1s
[4800/16000] [MSE: inf] 49.7+0.1s
[6400/16000] [MSE: inf] 48.5+0.0s
[8000/16000] [MSE: inf] 47.8+0.0s
[9600/16000] [MSE: inf] 48.3+0.0s
[11200/16000] [MSE: inf] 49.1+0.1s
[12800/16000] [MSE: inf] 46.7+0.1s
[14400/16000] [MSE: inf] 49.3+0.1s
[16000/16000] [MSE: inf] 49.9+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.21s
Saving...
Total: 26.94s
[Epoch 55] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.8+0.7s
[3200/16000] [MSE: inf] 49.0+0.1s
[4800/16000] [MSE: inf] 49.6+0.1s
[6400/16000] [MSE: inf] 50.5+0.1s
[8000/16000] [MSE: inf] 50.3+0.1s
[9600/16000] [MSE: inf] 50.1+0.1s
[11200/16000] [MSE: inf] 48.7+0.0s
[12800/16000] [MSE: inf] 48.3+0.0s
[14400/16000] [MSE: inf] 48.3+0.0s
[16000/16000] [MSE: inf] 48.9+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.27s
Saving...
Total: 26.77s
[Epoch 56] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.3+0.7s
[3200/16000] [MSE: inf] 51.1+0.1s
[4800/16000] [MSE: inf] 47.0+0.1s
[6400/16000] [MSE: inf] 49.4+0.1s
[8000/16000] [MSE: inf] 51.4+0.1s
[9600/16000] [MSE: inf] 49.6+0.0s
[11200/16000] [MSE: inf] 49.4+0.1s
[12800/16000] [MSE: inf] 50.9+0.1s
[14400/16000] [MSE: inf] 50.4+0.0s
[16000/16000] [MSE: inf] 47.6+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.33s
Saving...
Total: 26.93s
[Epoch 57] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 45.5+0.6s
[3200/16000] [MSE: inf] 46.4+0.1s
[4800/16000] [MSE: inf] 46.2+0.0s
[6400/16000] [MSE: inf] 45.6+0.1s
[8000/16000] [MSE: inf] 50.1+0.1s
[9600/16000] [MSE: inf] 51.4+0.1s
[11200/16000] [MSE: inf] 50.7+0.1s
[12800/16000] [MSE: inf] 49.4+0.1s
[14400/16000] [MSE: inf] 50.7+0.1s
[16000/16000] [MSE: inf] 50.5+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.04s
Saving...
Total: 26.58s
[Epoch 58] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.8+0.6s
[3200/16000] [MSE: inf] 49.0+0.1s
[4800/16000] [MSE: inf] 50.0+0.1s
[6400/16000] [MSE: inf] 50.8+0.1s
[8000/16000] [MSE: inf] 50.7+0.1s
[9600/16000] [MSE: inf] 49.7+0.1s
[11200/16000] [MSE: inf] 49.0+0.1s
[12800/16000] [MSE: inf] 48.0+0.0s
[14400/16000] [MSE: inf] 47.3+0.0s
[16000/16000] [MSE: inf] 47.2+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.61s
Saving...
Total: 27.27s
[Epoch 59] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 46.2+0.7s
[3200/16000] [MSE: inf] 45.9+0.0s
[4800/16000] [MSE: inf] 47.0+0.0s
[6400/16000] [MSE: inf] 47.5+0.0s
[8000/16000] [MSE: inf] 46.4+0.0s
[9600/16000] [MSE: inf] 47.0+0.0s
[11200/16000] [MSE: inf] 46.9+0.1s
[12800/16000] [MSE: inf] 47.3+0.1s
[14400/16000] [MSE: inf] 47.6+0.0s
[16000/16000] [MSE: inf] 46.8+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.62s
Saving...
Total: 27.28s
[Epoch 60] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 50.1+0.7s
[3200/16000] [MSE: inf] 49.6+0.1s
[4800/16000] [MSE: inf] 50.7+0.1s
[6400/16000] [MSE: inf] 47.8+0.1s
[8000/16000] [MSE: inf] 46.2+0.0s
[9600/16000] [MSE: inf] 47.8+0.1s
[11200/16000] [MSE: inf] 51.2+0.1s
[12800/16000] [MSE: inf] 48.9+0.0s
[14400/16000] [MSE: inf] 48.2+0.0s
[16000/16000] [MSE: inf] 48.2+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.39s
Saving...
Total: 27.09s
[Epoch 61] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 45.7+0.8s
[3200/16000] [MSE: inf] 46.3+0.1s
[4800/16000] [MSE: inf] 49.6+0.1s
[6400/16000] [MSE: inf] 49.8+0.1s
[8000/16000] [MSE: inf] 49.7+0.0s
[9600/16000] [MSE: inf] 46.7+0.0s
[11200/16000] [MSE: inf] 50.1+0.1s
[12800/16000] [MSE: inf] 50.7+0.1s
[14400/16000] [MSE: inf] 48.7+0.0s
[16000/16000] [MSE: inf] 47.9+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.40s
Saving...
Total: 27.20s
[Epoch 62] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 47.8+0.7s
[3200/16000] [MSE: inf] 49.4+0.1s
[4800/16000] [MSE: inf] 49.1+0.1s
[6400/16000] [MSE: inf] 49.9+0.1s
[8000/16000] [MSE: inf] 48.7+0.0s
[9600/16000] [MSE: inf] 48.9+0.1s
[11200/16000] [MSE: inf] 47.2+0.0s
[12800/16000] [MSE: inf] 49.2+0.0s
[14400/16000] [MSE: inf] 50.7+0.1s
[16000/16000] [MSE: inf] 50.0+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.02s
Saving...
Total: 26.54s
[Epoch 63] Learning rate: 1.00e-4
[1600/16000] [MSE: inf] 48.8+0.6s
[3200/16000] [MSE: inf] 48.2+0.0s
[4800/16000] [MSE: inf] 49.7+0.1s
[6400/16000] [MSE: inf] 50.1+0.1s
[8000/16000] [MSE: inf] 49.6+0.1s
[9600/16000] [MSE: inf] 50.1+0.0s
[11200/16000] [MSE: inf] 49.8+0.1s
[12800/16000] [MSE: inf] 48.1+0.0s
[14400/16000] [MSE: inf] 48.5+0.0s
[16000/16000] [MSE: inf] 48.1+0.0s
Evaluation:
[DIV2K x10] PSNR: nan (Best: nan @epoch 20)
Forward: 26.39s
Saving...
Total: 26.92s