lambdanet / CAR /code /data /srdata.py
hyliu's picture
Upload folder using huggingface_hub
3ef0208 verified
raw
history blame
5.85 kB
import os
import glob
import random
import pickle
from data import common
import numpy as np
import imageio
import torch
import torch.utils.data as data
class SRData(data.Dataset):
def __init__(self, args, name='', train=True, benchmark=False):
self.args = args
self.name = name
self.train = train
self.split = 'train' if train else 'test'
self.do_eval = True
self.benchmark = benchmark
self.input_large = (args.model == 'VDSR')
self.scale = args.scale
self.idx_scale = 0
self._set_filesystem(args.dir_data)
if args.ext.find('img') < 0:
path_bin = os.path.join(self.apath, 'bin')
os.makedirs(path_bin, exist_ok=True)
list_hr, list_lr = self._scan()
if args.ext.find('img') >= 0 or benchmark:
self.images_hr, self.images_lr = list_hr, list_lr
elif args.ext.find('sep') >= 0:
os.makedirs(
self.dir_hr.replace(self.apath, path_bin),
exist_ok=True
)
for s in self.scale:
os.makedirs(
os.path.join(
self.dir_lr.replace(self.apath, path_bin),
'X{}'.format(s)
),
exist_ok=True
)
self.images_hr, self.images_lr = [], [[] for _ in self.scale]
for h in list_hr:
b = h.replace(self.apath, path_bin)
b = b.replace(self.ext[0], '.pt')
self.images_hr.append(b)
self._check_and_load(args.ext, h, b, verbose=True)
for i, ll in enumerate(list_lr):
for l in ll:
b = l.replace(self.apath, path_bin)
b = b.replace(self.ext[1], '.pt')
self.images_lr[i].append(b)
self._check_and_load(args.ext, l, b, verbose=True)
if train:
n_patches = args.batch_size * args.test_every
n_images = len(args.data_train) * len(self.images_hr)
if n_images == 0:
self.repeat = 0
else:
self.repeat = max(n_patches // n_images, 1)
# Below functions as used to prepare images
def _scan(self):
names_hr = sorted(
glob.glob(os.path.join(self.dir_hr, '*' + self.ext[0]))
)
names_lr = [[] for _ in self.scale]
for f in names_hr:
filename, _ = os.path.splitext(os.path.basename(f))
for si, s in enumerate(self.scale):
names_lr[si].append(os.path.join(
self.dir_lr, 'X{}/{}{}'.format(
s, filename, self.ext[1]
)
))
return names_hr, names_lr
def _set_filesystem(self, dir_data):
self.apath = os.path.join(dir_data, self.name)
self.dir_hr = os.path.join(self.apath, 'HR')
self.dir_lr = os.path.join(self.apath, 'LR_bicubic')
if self.input_large: self.dir_lr += 'L'
self.ext = ('.png', '.jpg')
def _check_and_load(self, ext, img, f, verbose=True):
if not os.path.isfile(f) or ext.find('reset') >= 0:
if verbose:
print('Making a binary: {}'.format(f))
with open(f, 'wb') as _f:
pickle.dump(imageio.imread(img), _f)
def __getitem__(self, idx):
lr, hr, filename = self._load_file(idx)
pair = self.get_patch(lr, hr)
pair = common.set_channel(*pair, n_channels=self.args.n_colors)
pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)
return pair_t[0], pair_t[1], filename
def __len__(self):
if self.train:
return len(self.images_hr) * self.repeat
else:
return len(self.images_hr)
def _get_index(self, idx):
if self.train:
return idx % len(self.images_hr)
else:
return idx
def _load_file(self, idx):
idx = self._get_index(idx)
f_hr = self.images_hr[idx]
f_lr = self.images_lr[self.idx_scale][idx]
filename, _ = os.path.splitext(os.path.basename(f_hr))
if self.args.ext == 'img' or self.benchmark:
hr = imageio.imread(f_hr)
lr = imageio.imread(f_lr)
elif self.args.ext.find('sep') >= 0:
with open(f_hr, 'rb') as _f:
hr = pickle.load(_f)
with open(f_lr, 'rb') as _f:
lr = pickle.load(_f)
return lr, hr, filename
def get_patch(self, lr, hr):
scale = self.scale[self.idx_scale]
if self.train:
lr, hr = common.get_patch(
lr, hr,
patch_size=self.args.patch_size,
scale=scale,
multi=(len(self.scale) > 1),
input_large=self.input_large
)
if not self.args.no_augment: lr, hr = common.augment(lr, hr)
else:
if self.args.model=="RECURSIONNET":
lr, hr = common.get_patch(
lr, hr,
patch_size=self.args.patch_size,
scale=scale,
multi=(len(self.scale) > 1),
input_large=self.input_large
)
else:
ih, iw = lr.shape[:2]
hr = hr[0:ih * scale, 0:iw * scale]
return lr, hr
def set_scale(self, idx_scale):
if not self.input_large:
self.idx_scale = idx_scale
else:
self.idx_scale = random.randint(0, len(self.scale) - 1)