File size: 14,823 Bytes
8ec10cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
from importlib import import_module

import torch
from torch import nn
import torch.distributed as dist

import matplotlib.pyplot as plt
plt.switch_backend('agg')	# https://github.com/matplotlib/matplotlib/issues/3466

from .metric import PSNR, SSIM

from utils import interact

class Loss(torch.nn.modules.loss._Loss):
    def __init__(self, args, epoch=None, model=None, optimizer=None):
        """
            input:
                args.loss       use '+' to sum over different loss functions
                                use '*' to specify the loss weight

                example:
                    1*MSE+0.5*VGG54
                                loss = sum of MSE and VGG54(weight=0.5)

                args.measure    similar to args.loss, but without weight

                example:
                    MSE+PSNR
                                measure MSE and PSNR, independently
        """
        super(Loss, self).__init__()

        self.args = args

        self.rgb_range = args.rgb_range
        self.device_type = args.device_type
        self.synchronized = False

        self.epoch = args.start_epoch if epoch is None else epoch
        self.save_dir = args.save_dir
        self.save_name = os.path.join(self.save_dir, 'loss.pt')

        # self.training = True
        self.validating = False
        self.testing = False
        self.mode = 'train'
        self.modes = ('train', 'val', 'test')

        # Loss
        self.loss = nn.ModuleDict()
        self.loss_types = []
        self.weight = {}

        self.loss_stat = {mode:{} for mode in self.modes}
        # loss_stat[mode][loss_type][epoch] = loss_value
        # loss_stat[mode]['Total'][epoch] = loss_total

        for weighted_loss in args.loss.split('+'):
            w, l = weighted_loss.split('*')
            l = l.upper()
            if l in ('ABS', 'L1'):
                loss_type = 'L1'
                func = nn.L1Loss()
            elif l in ('MSE', 'L2'):
                loss_type = 'L2'
                func = nn.MSELoss()
            elif l in ('ADV', 'GAN'):
                loss_type = 'ADV'
                m = import_module('loss.adversarial')
                func = getattr(m, 'Adversarial')(args, model, optimizer)
            else:
                loss_type = l
                m = import_module*'loss.{}'.format(l.lower())
                func = getattr(m, l)(args)

            self.loss_types += [loss_type]
            self.loss[loss_type] = func
            self.weight[loss_type] = float(w)

        print('Loss function: {}'.format(args.loss))

        # Metrics
        self.do_measure = args.metric.lower() != 'none'

        self.metric = nn.ModuleDict()
        self.metric_types = []
        self.metric_stat = {mode:{} for mode in self.modes}
        # metric_stat[mode][metric_type][epoch] = metric_value

        if self.do_measure:
            for metric_type in args.metric.split(','):
                metric_type = metric_type.upper()
                if metric_type == 'PSNR':
                    metric_func = PSNR()
                elif metric_type == 'SSIM':
                    metric_func = SSIM(args.device_type)    # single precision
                else:
                    raise NotImplementedError

                self.metric_types += [metric_type]
                self.metric[metric_type] = metric_func

        print('Metrics: {}'.format(args.metric))

        if args.start_epoch != 1:
            self.load(args.start_epoch - 1)

        for mode in self.modes:
            for loss_type in self.loss:
                if loss_type not in self.loss_stat[mode]:
                    self.loss_stat[mode][loss_type] = {}   # initialize loss

            if 'Total' not in self.loss_stat[mode]:
                self.loss_stat[mode]['Total'] = {}

            if self.do_measure:
                for metric_type in self.metric:
                    if metric_type not in self.metric_stat[mode]:
                        self.metric_stat[mode][metric_type] = {}

        self.count = 0
        self.count_m = 0

        self.to(args.device, dtype=args.dtype)

    def train(self, mode=True):
        super(Loss, self).train(mode)
        if mode:
            self.validating = False
            self.testing = False
            self.mode = 'train'
        else:   # default test mode
            self.validating = False
            self.testing = True
            self.mode = 'test'

    def validate(self):
        super(Loss, self).eval()
        # self.training = False
        self.validating = True
        self.testing = False
        self.mode = 'val'

    def test(self):
        super(Loss, self).eval()
        # self.training = False
        self.validating = False
        self.testing = True
        self.mode = 'test'

    def forward(self, input, target):
        self.synchronized = False

        loss = 0

        def _ms_forward(input, target, func):
            if isinstance(input, (list, tuple)): # loss for list output
                _loss = []
                for (input_i, target_i) in zip(input, target):
                    _loss += [func(input_i, target_i)]
                return sum(_loss)
            elif isinstance(input, dict):   # loss for dict output
                _loss = []
                for key in input:
                    _loss += [func(input[key], target[key])]
                return sum(_loss)
            else:   # loss for tensor output
                return func(input, target)

        # initialize
        if self.count == 0:
            for loss_type in self.loss_types:
                self.loss_stat[self.mode][loss_type][self.epoch] = 0
            self.loss_stat[self.mode]['Total'][self.epoch] = 0

        if isinstance(input, list):
            count = input[0].shape[0]
        else:   # Tensor
            count = input.shape[0]  # batch size

        isnan = False
        for loss_type in self.loss_types:

            if loss_type == 'ADV':
                _loss = self.loss[loss_type](input[0], target[0], self.training) * self.weight[loss_type]
            else:
                _loss = _ms_forward(input, target, self.loss[loss_type]) * self.weight[loss_type]

            if torch.isnan(_loss):
                isnan = True    # skip recording (will also be skipped at backprop)
            else:
                self.loss_stat[self.mode][loss_type][self.epoch] += _loss.item() * count
                self.loss_stat[self.mode]['Total'][self.epoch] += _loss.item() * count

            loss += _loss

        if not isnan:
            self.count += count

        if not self.training and self.do_measure:
            self.measure(input, target)

        return loss

    def measure(self, input, target):
        if isinstance(input, (list, tuple)):
            self.measure(input[0], target[0])
            return
        elif isinstance(input, dict):
            first_key = list(input.keys())[0]
            self.measure(input[first_key], target[first_key])
            return
        else:
            pass

        if self.count_m == 0:
            for metric_type in self.metric_stat[self.mode]:
                self.metric_stat[self.mode][metric_type][self.epoch] = 0

        if isinstance(input, list):
            count = input[0].shape[0]
        else:   # Tensor
            count = input.shape[0]  # batch size

        for metric_type in self.metric_stat[self.mode]:

            input = input.clamp(0, self.rgb_range)  # not in_place
            if self.rgb_range == 255:
                input.round_()

            _metric = self.metric[metric_type](input, target)
            self.metric_stat[self.mode][metric_type][self.epoch] += _metric.item() * count

        self.count_m += count

        return

    def normalize(self):
        if self.args.distributed:
            dist.barrier()
            if not self.synchronized:
                self.all_reduce()

        if self.count > 0:
            for loss_type in self.loss_stat[self.mode]: # including 'Total'
                self.loss_stat[self.mode][loss_type][self.epoch] /= self.count
            self.count = 0

        if self.count_m > 0:
            for metric_type in self.metric_stat[self.mode]:
                self.metric_stat[self.mode][metric_type][self.epoch] /= self.count_m
            self.count_m = 0

        return

    def all_reduce(self, epoch=None):
        # synchronize loss for distributed GPU processes

        if epoch is None:
            epoch = self.epoch

        def _reduce_value(value, ReduceOp=dist.ReduceOp.SUM):
            value_tensor = torch.Tensor([value]).to(self.args.device, self.args.dtype, non_blocking=True)
            dist.all_reduce(value_tensor, ReduceOp, async_op=False)
            value = value_tensor.item()
            del value_tensor

            return value

        dist.barrier()
        if self.count > 0:  # I assume this should be true
            self.count = _reduce_value(self.count, dist.ReduceOp.SUM)

            for loss_type in self.loss_stat[self.mode]:
                self.loss_stat[self.mode][loss_type][epoch] = _reduce_value(
                    self.loss_stat[self.mode][loss_type][epoch],
                    dist.ReduceOp.SUM
                )

        if self.count_m > 0:
            self.count_m = _reduce_value(self.count_m, dist.ReduceOp.SUM)

            for metric_type in self.metric_stat[self.mode]:
                self.metric_stat[self.mode][metric_type][epoch] = _reduce_value(
                    self.metric_stat[self.mode][metric_type][epoch],
                    dist.ReduceOp.SUM
                )

        self.synchronized = True

        return

    def print_metrics(self):

        print(self.get_metric_desc())
        return

    def get_last_loss(self):
        return self.loss_stat[self.mode]['Total'][self.epoch]

    def get_loss_desc(self):

        if self.mode == 'train':
            desc_prefix = 'Train'
        elif self.mode == 'val':
            desc_prefix = 'Validation'
        else:
            desc_prefix = 'Test'

        loss = self.loss_stat[self.mode]['Total'][self.epoch]
        if self.count > 0:
            loss /= self.count
        desc = '{} Loss: {:.1f}'.format(desc_prefix, loss)

        if self.mode in ('val', 'test'):
            metric_desc = self.get_metric_desc()
            desc = '{}{}'.format(desc, metric_desc)

        return desc

    def get_metric_desc(self):
        desc = ''
        for metric_type in self.metric_stat[self.mode]:
            measured = self.metric_stat[self.mode][metric_type][self.epoch]
            if self.count_m > 0:
                measured /= self.count_m

            if metric_type == 'PSNR':
                desc += ' {}: {:2.2f}'.format(metric_type, measured)
            elif metric_type == 'SSIM':
                desc += ' {}: {:1.4f}'.format(metric_type, measured)
            else:
                desc += ' {}: {:2.4f}'.format(metric_type, measured)

        return desc

    def step(self, plot_name=None):
        self.normalize()
        self.plot(plot_name)
        if not self.training and self.do_measure:
            # self.print_metrics()
            self.plot_metric()
        # self.epoch += 1

        return

    def save(self):

        state = {
            'loss_stat': self.loss_stat,
            'metric_stat': self.metric_stat,
        }
        torch.save(state, self.save_name)

        return

    def load(self, epoch=None):

        print('Loading loss record from {}'.format(self.save_name))
        if os.path.exists(self.save_name):
            state = torch.load(self.save_name, map_location=self.args.device)

            self.loss_stat = state['loss_stat']
            if 'metric_stat' in state:
                self.metric_stat = state['metric_stat']
            else:
                pass
        else:
            print('no loss record found for {}!'.format(self.save_name))

        if epoch is not None:
            self.epoch = epoch

        return

    def plot(self, plot_name=None, metric=False):

        self.plot_loss(plot_name)

        if metric:
            self.plot_metric(plot_name)
        # else:
        #     self.plot_loss(plot_name)

        return


    def plot_loss(self, plot_name=None):
        if plot_name is None:
            plot_name = os.path.join(self.save_dir, "{}_loss.pdf".format(self.mode))

        title = "{} loss".format(self.mode)

        fig = plt.figure()
        plt.title(title)
        plt.xlabel('epochs')
        plt.ylabel('loss')
        plt.grid(True, linestyle=':')

        for loss_type, loss_record in self.loss_stat[self.mode].items(): # including Total
            axis = sorted([epoch for epoch in loss_record.keys() if epoch <= self.epoch])
            value = [self.loss_stat[self.mode][loss_type][epoch] for epoch in axis]
            label = loss_type

            plt.plot(axis, value, label=label)

        plt.xlim(0, self.epoch)
        plt.legend()
        plt.savefig(plot_name)
        plt.close(fig)

        return

    def plot_metric(self, plot_name=None):
        # assume there are only max 2 metrics
        if plot_name is None:
            plot_name = os.path.join(self.save_dir, "{}_metric.pdf".format(self.mode))

        title = "{} metrics".format(self.mode)

        fig, ax1 = plt.subplots()
        plt.title(title)
        plt.grid(True, linestyle=':')
        ax1.set_xlabel('epochs')

        plots = None
        for metric_type, metric_record in self.metric_stat[self.mode].items():
            axis = sorted([epoch for epoch in metric_record.keys() if epoch <= self.epoch])
            value = [metric_record[epoch] for epoch in axis]
            label = metric_type

            if metric_type == 'PSNR':
                ax = ax1
                color='C0'
            elif metric_type == 'SSIM':
                ax2 = ax1.twinx()
                ax = ax2
                color='C1'

            ax.set_ylabel(metric_type)
            if plots is None:
                plots = ax.plot(axis, value, label=label, color=color)
            else:
                plots += ax.plot(axis, value, label=label, color=color)

        labels = [plot.get_label() for plot in plots]
        plt.legend(plots, labels)
        plt.xlim(0, self.epoch)
        plt.savefig(plot_name)
        plt.close(fig)

        return

    def sort(self):
        # sort the loss/metric record
        for mode in self.modes:
            for loss_type, loss_epochs in self.loss_stat[mode].items():
                self.loss_stat[mode][loss_type] = {epoch: loss_epochs[epoch] for epoch in sorted(loss_epochs)}

            for metric_type, metric_epochs in self.metric_stat[mode].items():
                self.metric_stat[mode][metric_type] = {epoch: metric_epochs[epoch] for epoch in sorted(metric_epochs)}

        return self