File size: 6,567 Bytes
d6ec83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import math
from decimal import Decimal

import utility

import torch
import torch.nn.utils as utils
from tqdm import tqdm

import torch.cuda.amp as amp

from torch.utils.tensorboard import SummaryWriter
import torchvision

import numpy as np

class Trainer():
    def __init__(self, args, loader, my_model, my_loss, ckp):
        self.args = args
        self.scale = args.scale

        self.ckp = ckp
        self.loader_train = loader.loader_train
        self.loader_test = loader.loader_test
        self.model = my_model
        self.loss = my_loss
        self.optimizer = utility.make_optimizer(args, self.model)

        if self.args.load != '':
            self.optimizer.load(ckp.dir, epoch=len(ckp.log))

        self.error_last = 1e8
        self.scaler=amp.GradScaler(
            enabled=args.amp
        )
        self.writter=None
        self.recurrence=args.recurrence
        if args.recurrence>1:
            self.writter=SummaryWriter(f"runs/{args.save}")

    def train(self):
        self.loss.step()
        epoch = self.optimizer.get_last_epoch() + 1
        lr = self.optimizer.get_lr()

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        # TEMP
        self.loader_train.dataset.set_scale(0)
        total=len(self.loader_train)
        buffer=[0.0]*self.recurrence
        # torch.autograd.set_detect_anomaly(True)
        for batch, (lr, hr, _,) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            # print(lr.min(),lr.max(), hr.min(),hr.max())
            # exit(0)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            with amp.autocast(self.args.amp):
                sr = self.model(lr, 0)
                if len(sr)==1:
                    sr=sr[0]
                # loss,buffer_lst=sequence_loss(sr,hr)
                loss = self.loss(sr, hr)
            self.scaler.scale(loss).backward()
            if self.args.gclip > 0:
                self.scaler.unscale_(self.optimizer)
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.scaler.step(self.optimizer)
            self.scaler.update()
            for i in range(self.recurrence):
                buffer[i]+=self.loss.buffer[i]
            # self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()
        if self.writter:
            for i in range(self.recurrence):
                grid=torchvision.utils.make_grid(sr[i])
                self.writter.add_image(f"Output{i}",grid,epoch)
                self.writter.add_scalar(f"Loss{i}",buffer[i]/total,epoch)
            self.writter.add_image("Input",torchvision.utils.make_grid(lr),epoch)
            self.writter.add_image("Target",torchvision.utils.make_grid(hr),epoch)
        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1]
        self.optimizer.schedule()

    def test(self):
        torch.set_grad_enabled(False)

        epoch = self.optimizer.get_last_epoch()
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(
            torch.zeros(1, len(self.loader_test), len(self.scale))
        )
        self.model.eval()

        timer_test = utility.timer()
        if self.args.save_results: self.ckp.begin_background()
        for idx_data, d in enumerate(self.loader_test):
            for idx_scale, scale in enumerate(self.scale):
                d.dataset.set_scale(idx_scale)
                for lr, hr, filename in tqdm(d, ncols=80):
                    lr, hr = self.prepare(lr, hr)
                    with amp.autocast(self.args.amp):
                        sr = self.model(lr, idx_scale)
                    if isinstance(sr,list):
                        sr=sr[-1]
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    self.ckp.log[-1, idx_data, idx_scale] += utility.calc_psnr(
                        sr, hr, scale, self.args.rgb_range, dataset=d
                    )
                    if self.args.save_gt:
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(d, filename[0], save_list, scale)

                self.ckp.log[-1, idx_data, idx_scale] /= len(d)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        d.dataset.name,
                        scale,
                        self.ckp.log[-1, idx_data, idx_scale],
                        best[0][idx_data, idx_scale],
                        best[1][idx_data, idx_scale] + 1
                    )
                )
        self.ckp.write_log('Forward: {:.2f}s\n'.format(timer_test.toc()))
        self.ckp.write_log('Saving...')
        # torch.cuda.empty_cache()
        if self.args.save_results:
            self.ckp.end_background()

        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0, 0] + 1 == epoch))

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )

        torch.set_grad_enabled(True)

    def prepare(self, *args):
        device = torch.device('cpu' if self.args.cpu else 'cuda')
        def _prepare(tensor):
            if self.args.precision == 'half': tensor = tensor.half()
            return tensor.to(device)

        return [_prepare(a) for a in args]

    def terminate(self):
        if self.args.test_only:
            self.test()
            return True
        else:
            epoch = self.optimizer.get_last_epoch() + 1
            return epoch >= self.args.epochs