import typing as T from yacs.config import CfgNode as CN _C: AutoConfig class Experimental(CN): SHUFFLE_IMAGES: bool BLANK_IMAGE: bool T_IMAGE: int USE_RETINA_MAPPER: bool USE_LAYER_SELECTOR: bool USE_BHV: bool USE_BHV_PASSTHROUGH: bool BEHV_ONLY: bool BEHV_SELECTION: T.Sequence BACKBONE_NOGRAD: bool STRAIGHT_FORWARD: bool STRAIGHT_FORWARD_BUT_KEEP_BACKBONE_GRAD: bool ANOTHER_SPLIT: bool SHUFFLE_VAL: bool NO_SPLIT: bool USE_DEV_MODEL: bool USE_FEAT: bool CENTER_FRAME: int REPLACE_BLANK_WITH_RANDOM: bool REPLACE_NONBLANK_WITH_RANDOM: bool USE_PREV_FRAME: bool USE_PREV_BEHV: bool USE_CURRENT_FRAME: bool USE_CURRENT_BEHV: bool USE_FTR_FRAME: bool USE_FTR_BEHV: bool USE_COORDS: bool MAX_DATASET_SIZE: int class Datamodule(CN): BATCH_SIZE: int NUM_WORKERS: int PIN_MEMORY: bool FEATURE_EXTRACTOR_MODE: bool class Dataset(CN): IMAGE_RESOLUTION: T.Sequence N_PREV_FRAMES: int N_FTR_FRAMES: int CACHE_DIR: str SUBJECT_LIST: T.Sequence ROIS: T.Sequence FMRI_SPACE: str FILTER_BY_SESSION: T.Sequence ROOT: str DARK_POSTFIX: str class Position_encoding(CN): IN_DIM: int MAX_STEPS: int FEATURES: int PERIODS: int class Lora(CN): SCALE: float RANK: int class Adaptive_ln(CN): SCALE: float class Backbone(CN): NAME: str CACHE_DIR: str LAYERS: T.Sequence FEATURE_DIMS: T.Sequence CLS_DIMS: T.Sequence LORA: Lora ADAPTIVE_LN: Adaptive_ln class Lora_1(CN): SCALE: float RANK: int class Adaptive_ln_1(CN): SCALE: float class Backbone_small(CN): NAME: str LAYERS: T.Sequence CLS_DIMS: T.Sequence T_DIM: int WIDTH: int MERGE_WIDTH: int LORA: Lora_1 ADAPTIVE_LN: Adaptive_ln_1 class Prev_feat(CN): DIM: int class Conv_head(CN): MAX_DIM: int KERNEL_SIZES: T.Sequence DEPTHS: T.Sequence WIDTH: int SIMPLE: bool class Cond(CN): USE: bool DROPOUT: float IN_DIM: int DIM: int PASSTHROUGH_DIM: int class Coords_mlp(CN): WIDTH: int DEPTH: int LOG: bool class Retina_mapper(CN): CONSTANT_SIGMA: float class Layer_selector(CN): {} class Bottleneck(CN): RANK: int OUT_DIM: int class Mlp(CN): DEPTH: int WIDTH: int class Shared(CN): USE: bool MLP: Mlp class Voxel_outs(CN): SHARED: Shared class Model(CN): WIDTH_RATIO: float BACKBONE: Backbone BACKBONE_SMALL: Backbone_small PREV_FEAT: Prev_feat CONV_HEAD: Conv_head COND: Cond MAX_TRAIN_VOXELS: int CHUNK_SIZE: int COORDS_MLP: Coords_mlp RETINA_MAPPER: Retina_mapper LAYER_SELECTOR: Layer_selector BOTTLENECK: Bottleneck VOXEL_OUTS: Voxel_outs class Sync(CN): USE: bool STAGE: str SKIP_EPOCHS: int EMA_BETA: float EMA_BIAS_CORRECTION: bool UPDATE_RULE: str EXP_SCALE: float EXP_SHIFT: float LOG_SHIFT: float EMA_KEY: str class Anneal(CN): T: int class Dark(CN): USE: bool MAX_EPOCH: int GT_ROIS: T.Sequence GT_SCALE_UP_COEF: float ANNEAL: Anneal class Loss(CN): NAME: str SMOOTH_L1_BETA: float SYNC: Sync DARK: Dark class Regularizer(CN): LAYER: float class Scheduler(CN): T_INITIAL: int T_MULT: float CYCLE_DECAY: float CYCLE_LIMIT: int WARMUP_T: int K_DECAY: float LR_MIN: float LR_MIN_WARMUP: float class Optimizer(CN): NAME: str LR: float WEIGHT_DECAY: float SCHEDULER: Scheduler class Early_stop(CN): PATIENCE: int class Checkpoint(CN): SAVE_TOP_K: int REMOVE: bool LOAD_BEST_ON_VAL: bool LOAD_BEST_ON_END: bool class Callbacks(CN): EARLY_STOP: Early_stop CHECKPOINT: Checkpoint class Trainer(CN): DDP: bool PRECISION: int GRADIENT_CLIP_VAL: float MAX_EPOCHS: int MAX_STEPS: int ACCUMULATE_GRAD_BATCHES: int VAL_CHECK_INTERVAL: float LIMIT_TRAIN_BATCHES: float LIMIT_VAL_BATCHES: float LOG_TRAIN_N_STEPS: int CALLBACKS: Callbacks class Model_soup(CN): USE: bool RECIPE: str GREEDY_TARGET: str class Analysis(CN): SAVE_NEURON_LOCATION: bool DRAW_NEURON_LOCATION: bool class AutoConfig(CN): DESCRIPTION: str EXPERIMENTAL: Experimental DATAMODULE: Datamodule DATASET: Dataset POSITION_ENCODING: Position_encoding MODEL: Model LOSS: Loss REGULARIZER: Regularizer OPTIMIZER: Optimizer TRAINER: Trainer MODEL_SOUP: Model_soup RESULTS_DIR: str CHECKPOINT_DIR: str ANALYSIS: Analysis