--- license: apache-2.0 widget: - text: "https://www.facebook.com/" base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: bert-large-multilingual-finetuned-phishing results: [] datasets: - huynq3Cyradar/Phishing_Detection_Dataset --- # bert-large-finetuned-phishing This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1462 - Accuracy: 0.9527 - Precision: 0.9652 - Recall: 0.9030 - False Positive Rate: 0.0187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | False Positive Rate | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-------------------:| | 0.2941 | 1.0 | 673 | 0.1956 | 0.9254 | 0.9662 | 0.8246 | 0.0166 | | 0.1771 | 2.0 | 1346 | 0.1813 | 0.9364 | 0.9773 | 0.8456 | 0.0113 | | 0.1208 | 3.0 | 2020 | 0.1498 | 0.9481 | 0.9645 | 0.8907 | 0.0189 | | 0.1041 | 4.0 | 2692 | 0.1462 | 0.9527 | 0.9652 | 0.9030 | 0.0187 | ### Framework versions - Transformers 4.39.0 - Pytorch 2.2.1 - Datasets 2.12.0 - Tokenizers 0.15.1