import tensorflow as tf from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping import pandas as pd from neural_network import create_neural_network_model # Import your custom model function # Load training data from CSV using pandas training_data = pd.read_csv('sensor_input.csv') # Assuming your training data has columns like 'features', 'labels', and 'rewards' train_inputs = training_data['features'] # Replace 'features' with the actual column name train_labels = training_data['labels'] # Replace 'labels' with the actual column name train_rewards = training_data['rewards'] # Replace 'rewards' with the actual column name # Define your model architecture seq_length = 128 # Example sequence length d_model = 512 # Example dimension action_space_size = 10 # Example action space size model = create_neural_network_model(seq_length, d_model, action_space_size) # Define loss functions and metrics losses = {'Output': 'categorical_crossentropy', 'Reward': 'mean_squared_error'} metrics = {'Output': 'accuracy'} # Compile the model opt = tf.keras.optimizers.Adam(learning_rate=0.001) model.compile(optimizer=opt, loss=losses, metrics=metrics) # Define callbacks (e.g., ModelCheckpoint, EarlyStopping) as needed callbacks = [ ModelCheckpoint(filepath='model_weights.h5', save_best_only=True), EarlyStopping(patience=5, restore_best_weights=True) ] # Train the model history = model.fit( x=train_inputs, # Your training data y={'Output': train_labels, 'Reward': train_rewards}, # Your training labels and rewards batch_size=32, epochs=50, callbacks=callbacks ) # Save the trained model model.save('Sephs_model.h5') # You can also save training history for analysis and plotting import pickle with open('training_history.pickle', 'wb') as history_file: pickle.dump(history.history, history_file)