File size: 3,969 Bytes
67cae53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers
# Custom Layer for Boolformer, with added threshold parameter
class BoolformerLayer(layers.Layer):
def __init__(self, threshold=0.5, **kwargs):
super(BoolformerLayer, self).__init__(**kwargs)
self.threshold = threshold
def build(self, input_shape):
self.dense_layer = layers.Dense(input_shape[-1], activation='relu')
def call(self, inputs):
logic_and = tf.math.logical_and(inputs, inputs > self.threshold)
logic_transformed = self.dense_layer(logic_and)
return logic_transformed
# Updated positional encoding function with improved efficiency
def positional_encoding(seq_length, d_model):
position = tf.range(seq_length, dtype=tf.float32)[:, tf.newaxis]
div_term = tf.exp(tf.range(0, d_model, 2, dtype=tf.float32) * -(tf.math.log(10000.0) / d_model))
pos_encoding = position * div_term
pos_encoding = tf.concat([tf.sin(pos_encoding[:, 0::2]), tf.cos(pos_encoding[:, 1::2])], axis=-1)
return pos_encoding[tf.newaxis, ...]
# Enhanced transformer encoder with parameter flexibility
def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout_rate=0.1):
attention_output = layers.MultiHeadAttention(key_dim=head_size, num_heads=num_heads, dropout=dropout_rate)(inputs, inputs)
attention_output = layers.Dropout(dropout_rate)(attention_output)
attention_output = layers.LayerNormalization(epsilon=1e-6)(inputs + attention_output)
ffn_output = layers.Dense(ff_dim, activation="relu")(attention_output)
ffn_output = layers.Dense(inputs.shape[-1])(ffn_output)
ffn_output = layers.Dropout(dropout_rate)(ffn_output)
return layers.LayerNormalization(epsilon=1e-6)(attention_output + ffn_output)
# Improved QLearningLayer with additional functionality
class QLearningLayer(layers.Layer):
def __init__(self, action_space_size, learning_rate=0.01, gamma=0.95, **kwargs):
super(QLearningLayer, self).__init__(**kwargs)
self.action_space_size = action_space_size
self.learning_rate = learning_rate
self.gamma = gamma
def build(self, input_shape):
self.q_table = tf.Variable(initial_value=tf.random.uniform([input_shape[-1], self.action_space_size], 0, 1), trainable=True)
def call(self, state, action=None, reward=None, next_state=None):
if action is not None and reward is not None and next_state is not None:
q_update = reward + self.gamma * tf.reduce_max(self.q_table[next_state])
self.q_table[state, action].assign((1 - self.learning_rate) * self.q_table[state, action] + self.learning_rate * q_update)
return tf.argmax(self.q_table[state], axis=1)
# Function to create and compile the neural network model
def create_neural_network_model(seq_length, d_model, action_space_size):
input_layer = keras.Input(shape=(seq_length, d_model))
pos_encoded = positional_encoding(seq_length, d_model) + input_layer
transformer_output = transformer_encoder(pos_encoded, head_size=32, num_heads=2, ff_dim=64)
x_bool = BoolformerLayer()(transformer_output)
rl_layer = QLearningLayer(action_space_size=action_space_size)(x_bool)
output_layer = layers.Dense(action_space_size, activation='softmax', name='Output')(rl_layer)
reward_layer = layers.Dense(1, name='Reward')(rl_layer)
model = keras.Model(inputs=input_layer, outputs=[output_layer, reward_layer])
opt = optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt, loss={'Output': 'categorical_crossentropy', 'Reward': 'mean_squared_error'},
metrics={'Output': 'accuracy'})
return model
# Example of creating and compiling the model
seq_length = 128 # Example sequence length
d_model = 512 # Example dimension
action_space_size = 10 # Example action space size
model = create_neural_network_model(seq_length, d_model, action_space_size) |