--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct tags: - chat - abliterated - uncensored --- # huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated This is an uncensored version of [Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. Qwen2.5-Coder uncensored version has covered six mainstream model sizes, [0.5](https://huggingface.co/huihui-ai/Qwen2.5-Coder-0.5B-Instruct-abliterated), [1.5](https://huggingface.co/huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated), [3](https://huggingface.co/huihui-ai/Qwen2.5-Coder-3B-Instruct-abliterated), [7](https://huggingface.co/huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated), [14](https://huggingface.co/huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated), [32](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) billion parameters. ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") ``` ## Evaluations The following data has been re-evaluated and calculated as the average for each test. | Benchmark | Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct-abliterated | |-------------|-----------------------------|-----------------------------------------| | IF_Eval | 43.43 | **45.41** | | MMLU Pro | 21.5 | 20.57 | | TruthfulQA | 46.07 | 41.9 | | BBH | 36.67 | 36.09 | | GPQA | 28.00 | 26.13 | The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated/blob/main/eval.sh)